Happy New Year!  As we start off 2019, we want to motive the nuclear community by sharing a few legal updates and popular reports that have come out around the end of the last year.

  • Nuclear Energy Innovation and Modernization Act (S.512, NEIMA):  On December 21, Congress adopted NEIMA, legislation that addresses NRC licensing activities for current and next-generation nuclear reactors—and which the President is expected to sign in due course.  The text of the enrolled bill can be found here.  The legislation has a number of sections devoted to budget efficiency and reigning in NRC licensing fees “to the maximum extent practicable,” but also contains a number of provisions pushing the agency to develop a new regulatory approach for advanced reactors.  These include:
    • Prompting the NRC to “Develop and implement” a Staged Licensing Program (along with conceptual design assessments and licensing project plans).  The legislation also pushes the NRC to hasten research and test reactor licensing, further adopt risk-informed regulatory processes, and train staff and hire experts to support licensing activities.  The legislation requires the NRC to provide reports to Congress to monitor agency progress.  Many of these steps are things the NRC already is attempting—for example, the NRC’s advanced reactor licensing guidance, such as its “Regulatory Review Roadmap For Non-Light Water Reactors,” already speak to staged licensing, conceptual design reviews, and project plans.  However, NEIMA authorizes $14,420,000 for this effort per year, which if added beyond current allocations could help hasten all of these activities.
    • Requiring the NRC to Report on Creating a New Reactor Licensing Framework.  As opposed to the above activities, which would occur largely under the current regulatory framework, the legislation would also ask the NRC to draft a report to Congress on developing a new, technology-inclusive regulatory framework for advanced reactor licensing, to be completed by 2027.  This builds on suggestions already put forward by the NRC staff for a “10 CFR Part 53” process for licensing advanced reactors, which is also highlighted in an article recently co-authored by one of the writers of this blog.
    • Amending the Atomic Energy Act to Allow Research/Test Reactors to Sell Energy.  This interesting provision would amend 42 USC 2134(c), one of the core elements of the Atomic Energy Act, to permit licensing of a broader variety of research and test reactors under a “minimum amount of regulation”—including research and test reactors that also generate revenue from other sources, such as through sales of electricity (although such sales would be capped at a percent of annual facility ownership & operating costs).  A goal of this provision appears to be to enhance the economics for building research and test reactors, long considered a key roadblock to advanced reactor licensing.

There is much more to this legislation than described here, and we hope it will have a significant effect on advanced reactor licensing in the United States.

  • DOE to Use 2 of NuScale’s First 12 Modules:  The same time as NEIMA moved through Congress, DOE announced a memorandum of understanding (MOU) to draw on 2 of the planned 12 modules of NuScale’s first reactor project, for DOE research and facility use.  This MOU concerns NuScale’s first planned reactor project, to be procured by Utah Associated Municipal Power Systems (UAMPS) and sited at Idaho National Laboratories (INL).  According to the DOE press release, one module would “be designated strictly for research activities (referred to as the Joint Use Modular Plant or JUMP program),” focusing on development of integrated energy systems. The second module would then be used to provide power to INL under a Power Purchase Agreement (PPA).
  • National Academies Fusion Report:  In Mid-December, the  National Academies of Sciences, Engineering, and Medicine (NAS) issued a detailed new report on nuclear fusion, entitled the Final Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research.  It highlights the significant progress made in fusion research, and provides guidance on a national strategy to achieve practical fusion energy.  Critically, along with supporting the multi-national International Thermonuclear Experimental Reactor (ITER) project in France, the report recommends a separate national effort “to build a compact pilot plant that produces electricity from fusion at the lowest possible capital cost.”  The report is technically focused, but also briefly discusses regulatory matters, pointing to past DOE safety guidance developed for the ITER project as a starting point.  It also posits that “[s]iting and licensing strategies for such facilities should be developed well in advance so as not to delay the progress toward the compact fusion pilot plant.”  Questions as to the final regulatory framework and regulator for commercial fusion facilities are still very much under consideration, although the report considers a transition to the NRC as the regulator for commercial fusion power facilities.

It also seems worth highlighting two other reports that came out earlier in 2018, that have been trending lately in the nuclear community.

  • The first is a U.S. Army-commissioned Study on the Use of Mobile Nuclear Power Plants for Ground Operations.  It is a thorough report that among other things, details past use of mobile nuclear reactors by the U.S. Army, including for providing power and fresh water at the Panama Canal Zone.  It also recommends the Army pursue mobile nuclear power plant acquisition through the National Defense Authorization Act, and suggests discrete performance requirements for any such plant.
  • The second is an MIT report, The Future of Nuclear Energy in a Carbon-Constrained World.  It covers a number of topics, and has a whole chapter dedicated to nuclear licensing issues.  Stepping back, a unique contribution of the report appears to be the way it leads with a very detailed discussion of nuclear power plant construction costs (including the huge costs incurred from site-specific construction activities), and uses this analysis to then drive many of its technical and regulatory recommendations: including on the use of modularized construction methods, regulatory standardization and harmonization, and government support for rapid testing and prototyping of new reactor designs—all with a general aim to improve the economics for advanced reactors.  One of the report’s principle authors, Jacopo Buongiorno, discusses this further in his Titans of Nuclear podcast.

For more about any of the above topics, please contact the authors.

The U.S. Nuclear Regulatory Commission (NRC) recently released a staff paper-SECY-18-0096-seeking Commission approval of a new proposed methodology for establishing “functional containment” performance criteria for non-light water reactors (non-LWRs).  This methodology would step away from deterministic containment design parameters and embrace a concept of “‘functional containment’ as a barrier, or a set of barriers taken together, that effectively limits the physical transport of radioactive material to the environment.”  If approved, the proposed methodology would be a critical step in developing a framework for licensing non-LWR designs.

Many current NRC regulations and guidance documents are prescriptive in nature and focus on problems unique to LWR technology—that is, the regulations tell you squarely what you need to do, providing limited opportunity to meet the end objective of the regulation in a different way.  For example, NRC guidance in NUREG-800 Chapter 3 provides detailed requirements for the strength and thickness of barrier concrete.  As the NRC has started to grapple with non-LWR designs, it has shifted its focus to more risk-based and performance-based methodologies—that is, the NRC would define the objective, and an applicant would have more flexibility in showing the NRC how its design meets the objective.  Under the performance-based methodology proposed in the SECY paper, the requirements imposed on physical barriers would be determined based on the risk of migration of radioactive materials and the other safety measures being used for containment.

The new methodology proposed by the NRC staff, therefore, does not prescribe the traditional structures, systems, and components (SSCs) required for functional containment, but rather focuses on performance requirements.  This methodology will give non-LWR designers more flexibility and provide a more integrated approach for developing a regulatory framework for non-LWRs.

A key component of the methodology is the “identification and categorization of licensing-basis events.”  The NRC staff recommends using the set of event categories initially developed under the Next Generation Nuclear Plant Project and used in the Licensing Modernization Project as the baseline for developing performance criteria.  Based on these event categories, the performance criteria will be developed to meet fundamental safety requirements.  Once the performance criteria have been determined, it appears the developers of non-LWRs would consider the potential consequences associated with the identified events and assess the cost and benefits of potential SSC options to prevent or mitigate the migration of radioactive material.  The NRC staff is calling this approach the “Barrier Assessment” or “Bow Tie” method, as depicted in the figure below:

If approved, the prosed methodology for functional containment performance criteria will be incorporated into the draft guidance the NRC staff is currently compiling for non-LWR licensing.

If you would like more information please contact the authors.

Recently, the Hill has been taking a flurry of legislative actions that impact the advanced reactor community across all spectra.  We provide a summary of some of the major bills going through Congress below, including a couple which have recently become law or may become so soon.

Nuclear Energy Innovation Capabilities Act (NEICA) (S. 97). This bill, which has a long history before Congress, finally passed both the House and Senate on September 24, and was signed by the President into law Friday September 28.  The text of the enrolled bill (the bill that has passed both chambers of Congress in identical form and sent to be signed) can be found here.

NEICA tackles a number of issues, but as a theme largely directs the US Department of Energy (DOE) to move forward on a number of actions long advocated for by the advanced reactor community—including opening up the labs more for private sector use, advancing a test reactor plan, and increasing collaboration with the US Nuclear Regulatory Commission (NRC).  As provided in the bill summary, DOE is instructed to:

  • Determine the need for a versatile reactor-based fast neutron source, which shall operate as a national user facility, and put forward a plan to construct and operate such a facility by the end of 2025.
  • Enhance its high-performance computation modeling and simulation techniques for advanced reactors.
  • Lead a program for testing of advanced reactor concepts (including physical testing), with a focus on removing licensing and technical uncertainty.  As part of this, the DOE is to work closely with the NRC to share technical expertise developed from this testing program and grant NRC staff access to the program and related sites to learn from any testing.  The goal of this is to help ensure the NRC has sufficient resources to license any reactor designs being tested.
  • Submit a budget proposal to Congress to perform the above activities.
  • Submit a report to Congress on fusion technologies under development (fusion is included within the bill’s broad definition of “advanced reactor”), with a focus on those technologies that can provide net energy production within 15 years after the start of construction of test or prototype facilities.
  • Develop an “Advanced Nuclear Energy Cost-Share Grant Program” to assist in paying NRC licensing fees for new reactor designs, including early stage activities such as development of a licensing plan.

NEICA was signed Friday along with H.R. 589, the DOE Research and Innovation Act, which also aims to shape DOE’s research agenda and use of the national laboratories to improve research collaboration and technology commercialization.

Energy-Related Appropriations Legislation (H.R. 5895). The President signed a broad appropriations bill on September 21, which covered funding for DOE.  The text of the enrolled bill can be found here, but summaries of the bill’s core DOE funding provisions can be found in a conference report, and a summary provided by the American Institute of Physics (AIP) here.  As represented in the AIP summary, the bill is largely a victory for DOE, with funding increases seemingly across the board, including a 10% increase in funding to the Office of Nuclear Energy and $65 million set aside for the versatile fast-neutron test reactor described above.

Nuclear Utilization of Keynote Energy Act (H.R. 1320). This bill passed the House on September 25.  The text of the bill can be found here.  It is targeted at NRC reform, and seeks among other things to:

  • Codify that up to $10.3M of the NRC’s work for advanced reactor readiness is to be removed from fee recovery (it also puts a cap on many other licensees’ annual fees).
  • Study the effect of removing the Atomic Energy Act’s restriction on foreign ownership, control, or domination of nuclear licenses (primarily affecting reactor licenses).
  • Study the elimination of the mandatory hearing requirement for uncontested reactor license applications.
  • Allow for the adoption of more informal hearing requirements for licensing proceedings.
  • Instruct the NRC as to more efficiently processing license applications, with a 42 month timeline for issuing safety and environmental reports after docketing of the application.
  • Establish community advisory boards in areas where plants are undergoing decommissioning.

Nuclear Energy Leadership Act (S. 3422). This bill was introduced into the Senate earlier this month, with 9  The text of the bill can be found here, and we provide a thorough summary in our past blog entry.  This bill would build on the Nuclear Energy Innovation Capabilities Act to, among other things:

  • Direct the U.S. government to enter into long-term power purchase agreements with nuclear reactors.
  • Promote the development of advanced reactors and fuel by strategically aligning U.S. government and industry interests, which is intended to enable U.S. developers to compete with their state-sponsored competitors from Russia and China.
  • Further push DOE to construct a fast neutron-capable research facility, which is crucial to test important new nuclear technologies and demonstrate their safe and reliable operation. Currently the only two facilities in the world like this are in Russia and China.
  • Develop a source of high-assay low-enriched uranium, which is the intended fuel for many advanced reactor designs, from U.S. government stockpiles. Again, both China and Russia have these capabilities domestically, but the U.S. does not.

This bill recognizes the national security implications that come with the long-term neglect of our nuclear industry, which is outlined in our recent paper published by Center for Strategic and International Studies, entitled  “Back from the Brink: A Threatened Nuclear Energy Industry Compromises National Security.”

* * *

This review only highlights some of the nuclear-related bills currently before Congress—others of which also touch on reform to, e.g., our national nuclear export controls regime.  For further information on the bills described above or on other nuclear legislation, please contact the authors.

A bipartisan group of nine U.S. senators has introduced the Nuclear Energy Leadership Act (NELA) (S 3422), a bill designed to help the United States return to its lead in nuclear energy technology.  The bill sponsors explain that the U.S. has yielded this position to Russia and China–weakening our energy security, economic competitiveness, and national security.  The blog authors, in collaboration with the Center for Strategic and International Studies, have recently published on just this issue in “Back from the Brink: A Threatened Nuclear Energy Industry Compromises National Security” (Jul. 2018).

The bill covers a range of activities to fund research, development and accelerated deployment of advanced nuclear energy technologies.  The one-page summary of the bill issued by the Senate Committee on Energy and Natural Resources explains–

To reestablish global leadership, the U.S. must have a healthy nuclear industry capable of designing and deploying the most advanced reactor concepts in the world at a competitive price. As we look for clean, safe, reliable, flexible, and diverse power sources to meet the nation’s energy needs, advanced reactors will play a critical role in that mix.

Notably, the bill would:

  • Direct the U.S. government to enter into long-term power purchase agreements (PPAs) with nuclear reactors.
  • Promote the development of advanced reactors and fuel by strategically aligning U.S. government and industry interests, which is intended to enable U.S. developers to compete with their state-sponsored competitors from Russia and China.
  • Construct a fast neutron-capable research facility, which is crucial to test important new nuclear technologies and demonstrate their safe and reliable operation. Currently the only two facilities in the world like this are in Russia and China.
  • Develop a source of high-assay low-enriched uranium, which is the intended fuel for many advanced reactor designs, from U.S. government stockpiles. Again, both China and Russia have these capabilities domestically, but the U.S. does not.

Section by Section Breakdown

The Senate Committee on Energy and Natural Resources also released a section-by-section analysis of NEAL, which we summarize below, paying particular attention to the PPA provision, which could be a near-term game changer for the advanced reactor industry.

  • S. Government Power Purchase Agreements (Sections 2 and 3). Notably, the bill would create a pilot program for the U.S. government to enter into long-term PPAs with commercial nuclear reactors.  Under the bill—
    • The Secretary of Energy must consult and coordinate with other Federal departments and agencies that could benefit from the program, including the Secretary of Defense and the Secretary of Homeland Security.
    • At least one PPA has to be in place with a commercial nuclear reactor by the end of 2023.
    • The maximum length of the PPA is extended from 10 to 40 years, and the PPAs can be scored annually. Currently, nuclear energy is at a disadvantage when competing for federal PPA, due to a law that pre-dates commercial nuclear power and limits PPAs to 10 years. Initial capital costs for nuclear reactors are paid for over a period beyond ten years, which means 10-year PPAs do not work for nuclear projects, so this change would be an important development for the industry.
    • In carrying out the pilot program, the Secretary of Energy must give special consideration to PPAs for “first-of-a-kind or early deployment nuclear technologies that can provide reliable and resilient power to high-value assets for national security purposes or other purposes…in the national interest, especially in remote off-grid scenarios or grid-connected scenarios that can provide capabilities commonly known as ‘islanding power capabilities’ during an emergency scenario.”

The other provisions of the bill, as described in the section-by-section analysis are summarized below.

  • Advanced Nuclear Reactor Research and Development Goals (Section 4). In order for the American nuclear industry to compete with state-owned or state-sponsored developers in rival nations – especially China and Russia – significant collaboration between the federal government, National Labs, and private industry is needed to accelerate innovation. This provision directs the Department of Energy (DOE) to establish specific goals to align these sectors and send a strong and coherent signal that the U.S. is re-establishing itself as a global leader in clean advanced nuclear technology.
  • Nuclear Energy Strategic Plan (Section 5). There has not been a cohesive long-term strategy for the direction of U.S. nuclear science and engineering research and development policy across administrations.  This section requires DOE’s Office of Nuclear Energy to develop a 10-year strategic plan that supports advanced nuclear R&D goals that will foster breakthrough innovation to help advanced nuclear reactors reach the market.
  • Versatile, Reactor-Based Fast Neutron Source/Facilities Required for Advanced Reactor R&D (Section 6). For the U.S. to be a global leader in advancing nuclear technology, we need the ability to test reactor fuels and materials. Currently, the only machines capable of producing a fast neutron spectrum are located in Russia and China. This measure directs DOE to construct a fast neutron-capable research facility, which is necessary to test important reactor components and demonstrate their safe and reliable operation – crucial for licensing advanced reactor concepts.
  • Advanced Nuclear Fuel Security Program/High-Assay Low-Enriched Uranium Availability (Section 7). A healthy domestic uranium mining, enrichment, and fuel fabrication capability that meets industry needs is another prerequisite for reestablishing U.S. nuclear leadership. Many advanced reactors will rely on high-assay low-enriched uranium (HALEU), but no domestic capability exists to produce it. This section establishes a program to provide a minimum amount of HALEU to U.S. advanced reactor developers from DOE stockpiles, until a long-term domestic supply is developed.
  • University Nuclear Leadership Program/Workforce Development (Section 8). The nuclear energy industry, the Nuclear Regulatory Commission, and the National Nuclear Security Administration all require a world-class, highly-skilled workforce to develop, regulate, and safeguard the next generation of advanced reactors. This section creates a university nuclear leadership program to meet these workforce needs.

The bill was introduced by  Sens. Lisa Murkowski (R-Alaska), Cory Booker (D-N.J.), James Risch (R-Idaho), Shelley Moore Capito (R-W.Va.), Mike Crapo (R-Idaho), Richard Durbin (D-Ill.), Joe Manchin (D-W.Va.), Sheldon Whitehouse (D-R.I.) and Chris Coons (D-Del.).

For questions on the bill or the links between national security and the commercial nuclear power industry, please contact one of the authors listed below.

In today’s international nuclear marketplace, foreign investment is a significant source of capital for U.S. next-generation nuclear ventures. However, about-to-be signed legislation has the potential to broadly expand the ability of the Committee on Foreign Investment in the United States (“CFIUS”) to review foreign investment into the United States directed towards the nuclear industry, as well as the ability of the U.S. government to control exports of emerging nuclear technologies.

The new legislation, expected to be signed today, will among other things: (1) increase the number of transactions falling under CFIUS jurisdiction, (2) make some CFIUS reviews mandatory, (3) and give CFIUS the ability to suspend pending investments.  The legislation will also (4) expand export controls for “emerging and foundational technologies.”  The advanced reactor community should be aware of the legislation as it could impact future investment plans.  The community may also want to involve itself in expected rulemakings that will clarify important parts of the legislation.

As background, CFIUS is a multi-agency committee, led by the Treasury Department, which has the ability to review foreign investments into the United States that pose a threat to national security. Under the current law, CFIUS is able to review transactions that allow a foreign entity to gain “control” over a US business that poses a national security risk—including U.S. businesses holding or involved in critical infrastructure and critical technologies, which includes nuclear power.  CFIUS works aside a separate, complex nuclear export control regime to police efforts by foreign powers to infiltrate critical infrastructure and technologies in a manner harmful to U.S. national interests.

The about-to-be-signed legislation, entitled the Foreign Investment Risk Review Modernization Act of 2018 and the Export Controls Act of 2018, have both been inserted into the John S. McCain National Defense Authorization Act for Fiscal Year 2019.  Hogan Lovells’ International Trade Practice has summarized key elements of the legislation in two client alerts (here and here).  The legislation has many components, but a few of which are worth calling out in more detail:

(1) Increasing the Scope of CFIUS Jurisdiction: Currently, the touchstone of CFIUS jurisdiction is whether any transaction would give a foreign entity control of a US business.   However, CFIUS will now be able to review many other types of transactions, including “any other investment[s]” (to be clarified by CFIUS by rulemaking) that concern critical infrastructure, critical technologies, or sensitive personal data of U.S. citizens.

Depending on how future CFIUS rulemaking efforts proceed, this could capture many types of investments in advanced reactor start-ups or fusion ventures, regardless if control is at stake—potentially even if the transaction just results in the foreign entity gaining access to material non-public technical information. CFIUS will also now be able to review changes to existing investor rights that could lead to the same result, as well as certain investments designed to get around CFIUS review.  Certain limited carve-outs exist for private equity and venture investments, but these are still to be clarified further.

(2)Making CFIUS Submissions Mandatory: Currently, while CFIUS can itself seek review of a transaction, generally no entity is required to submit a transaction to CFIUS for review (i.e., submissions are voluntary). However, businesses seeking investment involving foreign government backing will now have to submit “declarations” to CFIUS, and CFIUS would have 30 days to take a number of potential actions (again, to be clarified further by rulemaking). This piece of the legislation, like many others parts, is in response to increasing concerns around Chinese state-owned investment into sensitive US businesses.

(3) Allowing CFIUS to Suspend Transactions:  Currently, CFIUS can only recommend to the President that a transaction be blocked, making it in practice very hard and rare for a transaction actually to be blocked.  However, now CFIUS can suspend a proposed/pending transaction that appears to pose a threat to national security while it conducts its review.  This gives the committee a strong new tool to effectively kill transactions it does not favour.

(4)Intensifying U.S. Government Export Controls:  Alongside CFIUS reform, new legislation will allow the U.S. government to intensify how it controls exports of “emerging and foundational technologies.”  Currently such exports are controlled by a variety of regulators, including the U.S. Departments of Commerce and State, and in the case of nuclear power, also the U.S. Department of Energy and the U.S. Nuclear Regulatory Commission, under well-defined but also sometimes slow-to-change regimes.

This broad, new legislation appears designed to gives the Executive Branch important new mechanisms to quickly apply export controls to emergent fields that concern U.S. economic interests.  Within the nuclear space, this could impact both novel fission and fusion technologies that are either not covered or loosely regulated under current export control regimes—although its actual impact will follow only after this legislation is applied in practice.

While certain parts of this legislation may come into effect immediately, both CFIUS and the Executive Branch will have to undertake rulemakings and additional actions to fully implement its new powers.  This will provide opportunities for potentially affected parties to get their voice known, especially as the role of (and concern with) foreign investment in U.S. nuclear innovation is only expected to grow.

For more about CFIUS and nuclear export controls, as well as the above-described legislation, please contact the authors.

Nuclear power has had a busy year in 2017.  One of the most important trends for preserving the existing fleet of operating nuclear power plants has been the financial commitment  by US states to support nuclear power operating in their states and preserve their largest source of carbon-free power—and the thousands of jobs that go with it. This represents a significant reversal in state policy towards nuclear power, which traditionally has been left out of state programs promoting low or carbon free power—despite the fact that 60 percent of the carbon free power in the U.S. is generated by nuclear power. And the new state involvement has the potential to be a game-changer for next-generation reactors.

To highlight some of the key state activities from this year:

  • New York’s Clean Energy Standard and Illinois’s SB 2814, with their Zero-Emissions Credit (ZEC) programs, came into effect this year.  These programs represent among the first significant state efforts to  compensate nuclear power for its environmental benefits, and has helped keep a large number of nuclear power plants operational. Ohio has also introduced legislation to implement similar ZEC-type programs.
  • Federal district courts separately upheld both New York’s and Illinois’s ZEC programs against federal pre-emption and Constitutional challenges. Both decisions have been appealed, but nonetheless allow the state programs to continue in the interim.
  • Connecticut passed legislation that would allow nuclear power to compete directly against other zero-carbon resources in certain circumstances.
  • New Jersey introduced and advanced legislation to support nuclear power through “nuclear diversity certificates,” which would support the nuclear reactors for their environmental and fuel diversity attributes.

The core of many of these programs is valuing the benefits of nuclear power using the “social cost of carbon” framework. The social cost of carbon represents a potential measure of the harms caused by carbon emissions (and therefore, the value of carbon avoided by zero emissions generation). It was developed by a federal government interagency working group and has found itself increasingly referenced as part of state climate initiatives.

Although these programs directly benefit the current light water reactor fleet, it also signifies a larger trend by states to put nuclear power on an equal footing to other forms of low or zero-carbon generation sources.  This trend cannot be ignored by the advanced reactor industry. Just as renewable energy grew through state-level efforts to support the industry through renewable energy credit programs and portfolio standards, next generation reactor developers may want to look to states along with the federal government as potential sponsors for first-of-a-kind reactor projects.

These activities also explore the myriad different legal routes states can pursue to support the environmental and societal benefits of nuclear power. The U.S. energy grid is an ecosystem with many state, regional, and federal actors all working together to provide electricity at low cost and in accordance with legitimate policy goals. Disputes are likely to arise (and have arisen) as to where the borders between state and federal involvement. But that does not change the fact that states have always had a role in the in the promotion and regulation of nuclear power. An opportunity now exists to redefined that relationship, and for a new generation of state leaders to reengage with a new generation of reactor developers, for the benefit of all involved.

For more on state legislative activities affecting nuclear power, please contact the authors.

On Wednesday, November 15, the US Nuclear Regulatory Commission (NRC) staff published a revised and final regulatory basis document in support of its rulemaking to reform emergency planning requirements for small modular and advanced reactors, including medical isotope reactors.  This rulemaking promises to significantly reduce costs for next generation nuclear plants by employing individualized, risk-informed requirements as opposed to rigid deterministic ones.

Fifty-seven individuals, companies, and organizations commented on the draft regulatory basis document.  The NRC staff made a number of edits to respond to the comments, including further incorporating risk-informed concepts into the text of the regulatory basis, and increasing discussion of the agency’s framework for establishing the size of emergency planning zones for new reactor designs.  According to the NRC’s rulemaking schedule, a proposed rule is due to be published early 2019, with a final rule in 2020.

This action by the NRC coincides with exciting developments for the US Department of Energy.  This week the Transient Reactor Test Facility (TREAT) at Idaho National Laboratories successfully completed low-power operations after being brought out of standby since 1994.  As explained in industry press, the restart of TREAT is a big success story for the agency, which refurbished the facility a year ahead of schedule and $20 million under budget.  TREAT specializes in testing new reactor fuels under heavy irradiation conditions, to see how they perform particularly in accident scenarios.  Testing new fuel designs is a linchpin to commercializing new reactor designs, as many of them rely on completely new concepts for nuclear fuel.

TREAT may also be getting company.  This same week, the House of Representatives Committee on Science, Space, and Technology approved an exciting new bill markup, HR 4378, the “Nuclear Energy Research Infrastructure Act of 2017.”  This piece of legislation tries to deliver on repeated calls to build a new test reactor in the United States.  It calls for a fast-neutron test facility to be completed in the mid-2020s that supports (among other things) high-temperature testing, testing of different coolant types, medical isotope production, and which is designed to be upgrade-able over time.  Funding is set aside, with $35 million in 2018, scaling up to $350 million from 2023 to 2025.

For more on any of these topics, feel free to contact the authors.

Last Thursday the Senate Energy and Natural Resources Committee reported out of committee the Nuclear Energy Innovation Capabilities Act of 2017 (bill S.97).  This legislation will “enable civilian research and development of advanced nuclear energy technologies by private and public institutions” and represents a significant opportunity for advanced reactors.  It is now one step closer to a full Senate floor vote.

This comes on the heels of a different advanced reactor bill, the Nuclear Energy Innovation and Modernization Act of 2017 (bill S.512), reporting out of the Senate Environment and Public Works Committee a week earlier.  Confused about the multiple advanced reactor-related bills moving forward in Congress?  Check out our prior post to learn more about them.

On Thursday, a team of eight U.S. Senators introduced S. 512, the Nuclear Energy Innovation and Modernization Act.   As described in a press release by the Senate Committee on Environment and Public Works, this bill tackles a number of issues affecting the licensing of advanced reactors.  It promises to “establish[] new transparency and accountability measures to the commission’s budget and fee programs,” “develop the regulatory framework necessary to enable the licensing of advanced nuclear reactors,” and “improve the efficiency of uranium regulation,” among other things.  The text of the bill can be found here.

S. 512 builds off of a prior version of the bill introduced in 2016, numbered S. 2795 (see a prior post on this legislation here). Among some of the changes from the 2016 version, S. 512 contains new sections on uranium recovery and transfers. It also adds a new focus on the licensing of new types of nuclear reactor fuel—for example, it now asks that the U.S. Nuclear Regulatory Commission evaluate “strategies for the qualification of advanced nuclear reactor fuel, including the use of computer modeling and simulation and experimental validation.”

A similarly-named bill, the Nuclear Energy Innovation Capabilities Act, was introduced in Congress earlier in 2017 (S. 97 and H.R. 431). You can see our blog post on this legislation here.  The Senate version of the bill, which was referred to the Senate Energy and Natural Resources Committee, shares some of the same sponsors as S. 512.  The Nuclear Energy Innovation Capabilities Act appears to focus more on R&D and the use of national laboratories to assist nuclear energy innovators.  On the other hand, S. 512, which is broader in scope, focuses more on NRC licensing.

The Nuclear Energy Innovation and Modernization Act is an exciting piece of legislation.  We will continue to inform readers as it moves through the legislative process.

January has already proven an eventful month for developers of small modular reactors (SMRs) and non-light water (i.e., advanced) reactors.

The U.S. Nuclear Regulatory Commission (NRC) is finally starting to see significant movement in regards to SMRs.  NuScale’s January 12 submission of its design certification application for a 50 MWe SMR design garnered significant news attention.  Also of note, on the same day the Tennessee Valley Authority’s (TVA’s) early site permit application for a SMR power plant at Clinch River, Tennessee was docketed by the NRC.

For advanced nuclear reactors, earlier this month the Nuclear Energy Innovation Capabilities Act was introduced in the House and Senate to spur technology development related to advanced reactors.  The companion bills, H.R.431 and S.97, were introduced by Representative Randy Weber and Senator Mike Crapo and have bipartisan support.  Although the text is not publicly available yet, in a press release from the House Committee on Science, Space, and Technology, Randy Weber stated that “[t]his legislation requires the Department of Energy to prioritize its R&D infrastructure on capabilities that will enable the private sector to develop advanced reactor technologies.”

Separate legislation geared towards improving the regulatory framework for advanced reactors progressed in Congress in 2016, but has since been dormant during the political transition (a detailed entry discussing this legislation is available here).  If one or both of these efforts is able to move forward this year, it could prove very helpful to the advanced reactor community.

For more on legislative developments related to SMRs and advanced nuclear reactors, please contact the authors.