The U.S. Nuclear Regulatory Commission (NRC) recently released a staff paper-SECY-18-0096-seeking Commission approval of a new proposed methodology for establishing “functional containment” performance criteria for non-light water reactors (non-LWRs).  This methodology would step away from deterministic containment design parameters and embrace a concept of “‘functional containment’ as a barrier, or a set of barriers taken together, that effectively limits the physical transport of radioactive material to the environment.”  If approved, the proposed methodology would be a critical step in developing a framework for licensing non-LWR designs.

Many current NRC regulations and guidance documents are prescriptive in nature and focus on problems unique to LWR technology—that is, the regulations tell you squarely what you need to do, providing limited opportunity to meet the end objective of the regulation in a different way.  For example, NRC guidance in NUREG-800 Chapter 3 provides detailed requirements for the strength and thickness of barrier concrete.  As the NRC has started to grapple with non-LWR designs, it has shifted its focus to more risk-based and performance-based methodologies—that is, the NRC would define the objective, and an applicant would have more flexibility in showing the NRC how its design meets the objective.  Under the performance-based methodology proposed in the SECY paper, the requirements imposed on physical barriers would be determined based on the risk of migration of radioactive materials and the other safety measures being used for containment.

The new methodology proposed by the NRC staff, therefore, does not prescribe the traditional structures, systems, and components (SSCs) required for functional containment, but rather focuses on performance requirements.  This methodology will give non-LWR designers more flexibility and provide a more integrated approach for developing a regulatory framework for non-LWRs.

A key component of the methodology is the “identification and categorization of licensing-basis events.”  The NRC staff recommends using the set of event categories initially developed under the Next Generation Nuclear Plant Project and used in the Licensing Modernization Project as the baseline for developing performance criteria.  Based on these event categories, the performance criteria will be developed to meet fundamental safety requirements.  Once the performance criteria have been determined, it appears the developers of non-LWRs would consider the potential consequences associated with the identified events and assess the cost and benefits of potential SSC options to prevent or mitigate the migration of radioactive material.  The NRC staff is calling this approach the “Barrier Assessment” or “Bow Tie” method, as depicted in the figure below:

If approved, the prosed methodology for functional containment performance criteria will be incorporated into the draft guidance the NRC staff is currently compiling for non-LWR licensing.

If you would like more information please contact the authors.

This month, the NRC published an early draft regulatory guide on the content of license applications for non-LWRs.  The document is designed to help license applicants apply the NRC’s movement towards a risk-informed/performance-based regulatory approach towards the drafting of an actual license application.

The document is in part the result of the Southern Company-led Licensing Modernization Project, which has resulted in the issuance of a number of informal reports discussing licensing reform for non-LWR reactors.  This draft regulatory guide is designed to more formally capture the results of those reports and follow-on discussions.   It addresses the designation of licensing basis events; safety classification and performance criteria for structures, systems, and components; and evaluation of defense in depth adequacy.  importantly, it largely adopts detailed draft industry guidance set forth in March of this year, although with certain clarifications.  One area of particular NRC focus concerns probabilistic risk analyses (“PRA”), where the agency appears to show a little hesitancy with the broad use of PRA proposed in the industry guidance.

The draft guidance is being issued to support future discussions, in particular an Advisory Committee on Reactor Safeguards meeting tentatively scheduled for October 30, 2018.  For more about the Licensing Modernization project, or recent NRC and industry guidance on contents for non-LWR license applications, please contact the authors.

The U.S. Nuclear Regulatory Commission (NRC) has moved forward in developing initial regulatory positions on next-generation reactors, and reaffirming the value of its international cooperation efforts.

In support of its December 14th periodic meeting on small modular reactor (SMR) and advanced reactor regulatory reform, the agency has issued two draft papers for which it is soliciting feedback: one on siting considerations, and one on designing containment systems.  This is in addition to a December 13 meeting on physical security, for which the NRC issued a draft paper for review in November.

The draft paper on siting considerations tackles an interesting issue—the siting of nuclear reactors next to population centers.  The NRC has had “a long standing policy of siting reactors away from densely populated centers,” but this is based on traditional, large light water reactor designs.  Even though such reactors are safe, some governments have taken hardline positions as to siting these reactors next to large population centers (e.g., Indian Point).  Advanced reactors reopen this issue.  The Commission has stated in the past that for next-generation reactors, “siting a reactor closer to a densely populated city than is current NRC practice would pose a very low risk to the populace.”  And as reactor designs are starting to take shape and prove themselves even safer than expected, revisiting this policy can open up a lot of new geographic options for advanced reactors.  To note, the issue of siting of advanced reactors relates to emergency planning considerations, a topic we have covered recently here.  Apart from siting though, all the papers present multiple opportunities for interested parties to comment on developing regulatory issues.

Moving abroad, in this staff paper, the NRC reaffirmed participation with the Halden Reactor Project, located in Norway.  The research reactor is managed by  the Norwegian Institute for Energy Technology, but operates under the auspices of the Nuclear Energy Agency as a “cooperatively funded international research and development project.”  The NRC has a long-standing relationship with Halden and reaffirmed its commitment to it, which includes roughly $1.5 million of funding.  The paper explains that international cooperation greatly leverages agency funds, with a 15-1 return on investment through participation in the project.

Although not unexpected here, the NRC’s reaffirmation of international cooperation nonetheless is another indication of the now global nature of the industry, especially for advanced reactors.  But the U.S. government can do more to promote international cooperation in nuclear development.  Innovation in next-generation nuclear reactors is global, with, for example, URENCO’s U-Battery venture yesterday announcing an agreement with Bruce Power (a Canadian utility).  This includes scoping “the potential deployment of micro nuclear reactors across Canada, including Bruce Power being the owner and/or operator of a fleet of U-Battery units.”  Other Advanced Reactor global partnerships include TerraPower in China and Lightbridge and Areva,  Recently, two Congressmen penned a letter to the Department of Energy expressing serious concern with the slow pace of permitting in relation to nuclear technology cooperation, and recognizing that the slow pace of approvals of nuclear technology exports hinders nuclear commerce and U.S. competitiveness in the field.

Hopefully, the federal government can turn to doing more to promote international cooperation and support.  Just yesterday, the Department of Commerce published a notice of an upcoming U.S.-Saudi Arabia nuclear energy roundtable.  The goal of the event is “to initiate a partnership process between U.S. civil nuclear energy companies and the King Abdullah City for Atomic and Renewable Energy (K.A.CARE), and between the U.S. and [Saudi] civil nuclear industries.”  It presents a promising opportunity for the U.S. to regain a dominant role in new nuclear construction, as Saudi Arabia is pushing forward with an effort to develop almost 18 GW of new nuclear in the country by the mid-2030s.

For more on the recent NRC publications on regulatory reform, or recent international attention to nuclear energy, please contact the authors.

Hogan Lovells had the honor Monday of hosting the Washington, D.C. launch party for Ambassador Thomas Graham’s new book “Seeing the Light: The Case for Nuclear Power in the 21st Century.”  As part of the launch party, Hogan Lovells partner Amy Roma sat down with Tom and three other distinguished guests for a panel on the future of nuclear power.  The other panelists included: Senator John Warner (former Secretary of the Navy; five term Virginia Senator), Mike Wallace (current Board member for Emirates Nuclear Energy Corporation; former Constellation Energy COO and Vice-Chairman), and Jim McDonnell (Director of DHS’ Domestic Nuclear Detection Office).

The book has drawn strong critical acclaim. Richard Rhodes, the Pulitzer Prize recipient for The Making of the Atomic Bomb, calls this publication “the best book” written on the subject of commercial nuclear power. The book makes clear that “[n]uclear power is not an option for the future but an absolute necessity.” It also explains that:

Fortunately, a new era of growth in this energy source is underway in developing nations, though not yet in the West. Seeing the Light is the first book to clarify these realities and discuss their implications for coming decades. Readers will learn how, why, and where the new nuclear era is happening, what new technologies are involved, and what this means for preventing the proliferation of weapons. This book is the best work available for becoming fully informed about this key subject, for students, the general public, and anyone interested in the future of energy production, and, thus, the future of humanity on planet Earth.

The panel provided an exciting opportunity to marry the research and conclusions from Seeing the Light with the experiences and insights of those working to make the future of nuclear power—including next generation nuclear power—a reality. Some of the many insights from the panel included the following:

  • National Security Should Be Considered, as well as Climate Change: Seeing the Light clearly explains that the urgent threat of climate change requires nuclear power to work alongside renewables. In addition, the panel discussed at length that national security is also an important concern, and one that national leaders may also readily get behind. From an inability to power the nuclear navy to losing our seat on the table with regards to non-proliferation, the panelists repeatedly brought home the importance of having a robust commercial nuclear industrial base to keep the country at the cutting edge. The panelists expressed grave concern that a downward spiral in nuclear investment and talent threatens the U.S. on multiple fronts.
  • Effective Non-Proliferation Requires Peaceful Nuclear Power: While the book argues that the global nuclear non-proliferation treaties of the 20th century were not just giveaways from non-weapons states to the nuclear weapons states. Instead, they were agreements that in exchange for not engaging in nuclear weapons, non-weapons states would have assistance to develop a robust commercial, peaceful nuclear industry. And the U.S. has an obligation to these parties to assist them with their programs.  Moreover, the lack of a U.S. presence in foreign nuclear programs, weakens the U.S. voice on non-proliferation issues.
  • Ensuring New Nuclear Meets Top Safety and Security Standards. The panelists also all agreed that the use of U.S. technology abroad means that U.S. standards for safety and security, which are the highest in the World, will be incorporated into foreign reactor programs.
  • Top-Level Government Support Needs To Complement Private Action: All the panelists also agreed that the development of nuclear power in the 20th century was a true public-private partnership, with both Congress and the Executive Branch offering support. And this partnership delivered dividends countless times over back to the government and taxpayers. With a new wave of reactors moving forward around the world and the next generation of nuclear power on the horizon, the panelists agree that this needs to happen again, and that circumstances are right to make real progress towards this in the near future.

For more on the book, the panel, or on the potential role nuclear power can play in our future, please contact the authors.

 Late last week the U.S. Nuclear Regulatory Commission (NRC) staff released its non-light water reactor (i.e., advanced reactor) “Near-Term Implementation Action Plans,” and “Mid-Term and Long-Term Implementation Action Plans.”  These two plans follow up from the agency’s Vision & Strategy Statement for advanced reactors, and attempt to more concretely lay out the NRC staff’s next steps for developing a regulatory framework for advanced reactor licensing.  A few quick insights from the two documents:

  • Both plans are based on the same five to six strategies.  The first five are, in short: (i) develop knowledge and skills, (ii) develop computer codes and tools, (iii) develop a flexible regulatory review process, (iv) facilitate industry codes and standards, and (v) resolve policy questions (one difference here though is that the near-term plans focus on technology-inclusive issues, while the longer-term plans focus on technology-specific issues).  The near-term plan also specifically lists as a sixth strategy that the NRC would “develop a communications strategy.” But a communications strategy will certainly continue to exist and evolve as the NRC moves into the mid and long term.
  • Among the six near-term strategies, the NRC staff plans to prioritize strategies (iii) and (v), developing the regulatory review process and resolving common policy issues.  This is due to “stakeholder feedback on the draft near-term [plans] and recommendations of the Advisory Committee on Reactor Safeguards” (ACRS).  The ACRS letter making this recommendation can be found here.  This prioritization will help the agency be better prepared in case applications come in for approval to the NRC earlier than the agency expects.  The NRC’s overall plan is to be ready to address advanced reactor applications in 2025, but multiple parties have indicated they will be submitting applications earlier.
  • In the near term, strategy (iii), concerning the regulatory review process, is guidance-based and is designed to work “within the bounds of existing regulations.”  In the mid-to-long term, the NRC staff bifurcates the strategy: continuing a guidance-focused approach, while considering a rulemaking to develop an advanced reactor regulatory framework that is “is risk-informed, performance-based, technology-inclusive, and that features staff review efforts commensurate with the risks posed by the non-LWR [nuclear power plant] design being considered.”

    However, the rulemaking approach is only suggested as an option “if needed.”  In discussing its long-term strategy, the agency staff stated it “will evaluate the need for or potential benefits of such a rulemaking throughout near- and mid-term activities,” based on  whether or not it will improve licensing and regulatory effectiveness.  The upshot, though, is that a rulemaking is still very much on the table, and this furthers a long-running debate as to the extent regulatory reform is needed for advanced reactors to prosper in the United States.

  • The NRC staff appears to reinvigorate discussion of conceptual design assessments and staged review processes, which as we have discussed in a prior post the agency seemed to downplay in its final Vision & Strategy Statement.  Draft guidance for these two processes can be found in the October 2016 draft document, “A Regulatory Review Roadmap for Non-Light Water Reactors.”

These Implementation Action Plans, along with the feedback the agency staff received from stakeholders and the ACRS, will be helpful generally.  However, the increasingly likely option that reactor designers will be submitting designs to the NRC earlier than expected will present a true test of the NRC’s readiness.  According to the agency staff, “[i]n those cases, the NRC will work developers on design-specific licensing project plans . . . and the NRC may prioritize or accelerate specific contributing activities in [its action plans], as needed.”

If there are any questions on the licensing regime for advanced reactors, please reach out to the authors.

In prior posts we have touched on the importance of prototype and test reactors in enabling the eventual commercialization of advanced reactors.  To help in those efforts, the NRC recently issued early draft guidance on “Nuclear Power Reactor Testing Needs and Prototype Plants for Advanced Reactor Designs.”  This document has been issued to support a public meeting on the topic, currently scheduled to occur sometime in August 2017.

As described by the NRC, this guidance describes the (i) “relevant regulations governing the testing requirements for advanced reactors,” (ii) “the process for determining testing needs to meet the NRC’s regulatory requirements,” (iii) “when a prototype plant might be needed and how it might differ from the proposed standard plant design,” and (iv) “licensing strategies and options that include the use of a prototype plant to meet the NRC’s testing requirements.”

To add, the document also provides some discussion as to the differences between prototype plants, demonstration reactors, test reactors, first-of-a-kind reactors, and other terms that are often thrown around in this space.  It also discusses different categories of tests to be conducted, and provides an FAQ on the use of a prototype plant as part of a testing regime.  Appendix A is an annotated reprint of a section of a 1991 staff paper, and is entitled “Process for Determining Testing Needs”; and Appendix B provides an interesting discussion on “Options For Using a Prototype Plant To Achieve a Design Certification or Standard Design Approval.”

For any questions on the above, please contact the authors.

Two long-awaited opportunities for public input into the development of advanced reactors are coming up – the third NRC-DOE Advanced Reactor Workshop, and a two-day NRC public meeting on advanced reactor regulatory policy.  We provide some information about both events below.

Next week, from April 25-26, is the third NRC-DOE Advanced Reactor Workshop, to be held in Rockville, Maryland.  The conference is focused on improving efficiency in the development and licensing of advanced reactors.  Specific topics will include:

  • Recent NRC and DOE initiatives;
  • Regulatory review process options and safety-focused reviews;
  • Modeling and testing in support of the reactor licensing process; and
  • Reactor vendor licensing strategies and issues.

The full workshop agenda can be found here.  Some interested pre-reading for attendees includes the NRC’s recently published advanced reactor design criteria guidance, as well as the summaries and presentations from the prior two NRC-DOE workshops (from September 2015 and June 2016).  Although online registration has closed, the workshop is open to the public and interested members can reach out to the agency contacts listed here to find out how to attend (note, the registration page says registration is encouraged but not required).

The following week, from May 3 to May 4, is the NRC’s Public Meeting/Webinar on Possible Regulatory Process Improvements for Advanced Reactor Designs.  The meeting will circle around the follow topics:

  • Physical security requirements;
  • Defining licensing basis events;
  • Probabilistic risk assessments (PRA) & containment performance criteria;
  • Prioritization of policy issues;
  • Potential use of standard design approvals; and
  • Issues arising from the NRC-DOE Advanced Reactor Workshop.

For the discussion on physical security scheduled for the morning of Wednesday, May 3, the NRC has provided a link to a Nuclear Energy Institute (NEI) white paper for a proposed revision to the NRC’s physical security requirements set forth in 10 C.F.R. Part 73.  The NEI white paper, which was issued in December 2016, argues that the new proposed Part 73 requirements should recognize the enhanced engineered safety and security features of many advanced reactor technologies, and enable these technologies to demonstrate to the NRC that they meet the new physical security “performance capabilities” set forth in the proposed rule.  Such a change, NEI argues, would make the NRC licensing process for these technologies more efficient.  Interested readers may also want to check out our summary of the NRC’s recently issued physical and cyber security draft guidance document.

The NRC has also provided a link to an April 2017 DOE-Southern Company white paper that seeks to modernize the technical requirements for licensing advanced reactors to be more risk-informed and performance-based.  The NRC intends to discuss this paper in the afternoon on Wednesday, May 3.  The NRC plans to address PRA on the morning of Thursday, May 4, and “various policy issues” in the afternoon of Thursday, May 4.  This meeting can be attended in person or through teleconference.

We strongly encourage the advanced reactor community to participate in these events.  As recently noted by the trade press, the regulatory framework for advanced reactors is being flushed out now, long before reactors will be built.  Major decisions such as development of design criteria and staged review processes are being made in the near term, unfortunately under tight budgets.  Engagement today can save years later by helping educate the NRC and DOE as to the most optimal regulatory path forward.

If there are any questions as to the above, please do not hesitate to contact the authors.