The U.S. Nuclear Regulatory Commission (NRC) recently released a staff paper-SECY-18-0096-seeking Commission approval of a new proposed methodology for establishing “functional containment” performance criteria for non-light water reactors (non-LWRs).  This methodology would step away from deterministic containment design parameters and embrace a concept of “‘functional containment’ as a barrier, or a set of barriers taken together, that effectively limits the physical transport of radioactive material to the environment.”  If approved, the proposed methodology would be a critical step in developing a framework for licensing non-LWR designs.

Many current NRC regulations and guidance documents are prescriptive in nature and focus on problems unique to LWR technology—that is, the regulations tell you squarely what you need to do, providing limited opportunity to meet the end objective of the regulation in a different way.  For example, NRC guidance in NUREG-800 Chapter 3 provides detailed requirements for the strength and thickness of barrier concrete.  As the NRC has started to grapple with non-LWR designs, it has shifted its focus to more risk-based and performance-based methodologies—that is, the NRC would define the objective, and an applicant would have more flexibility in showing the NRC how its design meets the objective.  Under the performance-based methodology proposed in the SECY paper, the requirements imposed on physical barriers would be determined based on the risk of migration of radioactive materials and the other safety measures being used for containment.

The new methodology proposed by the NRC staff, therefore, does not prescribe the traditional structures, systems, and components (SSCs) required for functional containment, but rather focuses on performance requirements.  This methodology will give non-LWR designers more flexibility and provide a more integrated approach for developing a regulatory framework for non-LWRs.

A key component of the methodology is the “identification and categorization of licensing-basis events.”  The NRC staff recommends using the set of event categories initially developed under the Next Generation Nuclear Plant Project and used in the Licensing Modernization Project as the baseline for developing performance criteria.  Based on these event categories, the performance criteria will be developed to meet fundamental safety requirements.  Once the performance criteria have been determined, it appears the developers of non-LWRs would consider the potential consequences associated with the identified events and assess the cost and benefits of potential SSC options to prevent or mitigate the migration of radioactive material.  The NRC staff is calling this approach the “Barrier Assessment” or “Bow Tie” method, as depicted in the figure below:

If approved, the prosed methodology for functional containment performance criteria will be incorporated into the draft guidance the NRC staff is currently compiling for non-LWR licensing.

If you would like more information please contact the authors.

A recent headline in the energy trade press would not likely have caught the attention of the advanced nuclear industry: “Trump’s DOE punishes Obama-era solar success story.” A casual reader might quickly dismiss the story as indicative of a Trump Administration bias against renewable energy. The details reported in the story, however, convey a far different message—one that is great significance to the many advanced nuclear technology companies that are responding to DOE’s funding opportunity announcement for advanced nuclear development.

The E&E News article reports that a company by the name of 1366 Technologies accepted millions of dollars in DOE funding to develop a process to reduce the cost of producing silicon wafers. In return, it made certain commitments routinely required of recipients of DOE technology funding: to engage in substantial U.S. manufacture of the technology, to disclose to DOE patents produced with DOE financial assistance, to give DOE a royalty-free license for government use, and to give DOE so-called “march-in rights” to license the technology to others if the funding recipient fails to use the technology itself.

According to the published story, DOE has sought to enforce the commitment 1366 Technologies made to build its solar wafer manufacturing plant incorporating the DOE-funded technology in the U.S., specifically in upstate New York. Delays in obtaining a wholly separate DOE loan guarantee are said to account for a decision by 1366 to instead build its first plant in Asia. E&E News reports that DOE has responded with a submission to the United States Trade Representative suggesting that the failure to comply with the U.S. manufacture commitment should be weighed in considering a request by 1366 for exemption from the 30 percent tariff that generally applies to foreign manufacturers of solar panels. DOE is also reportedly evaluating its options with respect to 1366’s failure to disclose patents it filed while it was accepting DOE financial assistance. Under DOE intellectual property (IP) rules, the failure to make a required disclosure could result in a loss of rights in those patents.

This is not fairly characterized as an instance of the Trump Administration attacking the solar industry. Rather, it represents a continuation of the practice that the Obama Administration and others before it pursued (albeit with varying degrees of ardor) of ensuring that the American taxpayer gets the benefit of its bargain for assisting in the advancement of energy technologies. That funding is designed to advance U.S. competitiveness in energy technology and energy manufacturing. In DOE’s view, allowing the IP that results from the taxpayer investment to be shipped abroad for commercialization can defeat the purpose of the taxpayers’ investment. DOE’s views are supported by statute (in particular, this is the intent behind the Bayh Dole Act, 35 U.S.C. §§ 200 – 212).

This is why the advanced nuclear technology industry should be paying close attention to the 1366 case. The FOA for advanced nuclear technology puts great emphasis on the desire to rebuild U.S. nuclear manufacturing capability. DOE has recently announced its first round of awards under the FOA. Additional applicants have submitted in the second round, and many others are preparing to submit one or more applications over the five years that DOE has said the FOA will remain open. The FOA represents a great opportunity to make important advances in nuclear technology prowess and to restore the U.S. nuclear supply chain to its past pre-eminence. That is what DOE expressly seeks to do. Therefore, it is important to understand and to put in place a program to assure compliance with the “strings” that are attached to the DOE money.

More than 10 pages of the lengthy FOA are devoted to the applicable IP rules. The eyes of an enthusiastic applicant might easily glaze over when they get to those 10 pages, but that would be a mistake. The rules reflect the implementation of statutory requirements, and they are unique to government-funded IP. They may be unfamiliar to those schooled in standard IP rules and practices associated with filing for patent rights. The ultimate commercial success of developing a great new technology may depend on understanding the obligations, managing the risks, engaging with DOE candidly when unanticipated challenges arise, and of course internalizing what we all already know: there really is no free money.

Applicants for DOE funding worry a lot about the government royalty-free license and the march-in rights (which the government has never exercised). However, the story about 1366 Technologies shows that those who accept federal funding to develop their technologies should have far greater concern about meeting the commitments they make to manufacture the technology in the U.S. and to disclose the patents they develop with government funds. In our experience, DOE is open to discussion and negotiation, within the constraints of its statutory obligations. However, DOE has demonstrated its willingness to employ at least some of the powerful enforcement tools it has at its disposal to enforce those obligations if it concludes the circumstances warrant such action.

In short, it is important to understand and take seriously the substantial U.S. manufacture and patent disclosure obligations that come with a financial assistance, because DOE does.

For more information, please contact Mary Anne Sullivan.

On Sunday, the popular TV show Madam Secretary gave a starring role to the climate and security benefits of nuclear power. The episode, titled “Thin Ice,” which is still available on the CBS website, proffered a full-throated defense of the climate benefits of nuclear power, turned a grassroots activist organization into a supporter of nuclear energy, and showcased how a nuclear powered ice breaker protected the Arctic from a foreign incursion. It capped with Secretary McCord convincing the show’s President to revise the national nuclear policy. As Michael Shellenberger opined following the episode (he also walks through the episode in detail), this marks a turning point for Hollywood, and “represents a popular culture breakthrough for the pro-nuclear movement.”  We encourage everyone to watch the episode!

From there, the week has only gotten better for nuclear innovation. The U.S. Nuclear Regulatory Commission (NRC) completed “the first and most intensive phase of review for” NuScale’s Design Certification Application for its small modular reactor. The NuScale design review has six phases to its schedule; but the first review sets the tenor, as it establishes the NRC staff’s preliminary safety evaluation of the reactor and encompasses a large portion of the requests for additional information. NuScale performed admirably in both areas. Along with this significant milestone—which derisks the company’s regulatory path forward—NuScale also received US$40 million from U.S. Department of Energy to continue advancing its innovative new, passively safe reactor design. And even the issue of nuclear waste storage might see progress, as the Nuclear Waste Policy Amendments Act of 2018 will get a vote on the floor of the House soon. The bill will move forward interim storage of spent nuclear fuel, and seek resolution on the licensing of a final national repository.

And apart from advancements on earth, NASA successfully tested KRUSTY, or “Kilopower Reactor Using Stirling Technology,” a nuclear reactor for potential moon and Mars bases. NASA personnel stated after the successful Nevada trial that “[n]o matter what environment we expose it to, the reactor performs very well.” NASA, along with Hollywood and Congress it seems, has taken a renewed interest in the role nuclear power can play in space exploration.

If you wish to learn more about any of these encouraging events, please contact the authors.

Hogan Lovells had the honor Monday of hosting the Washington, D.C. launch party for Ambassador Thomas Graham’s new book “Seeing the Light: The Case for Nuclear Power in the 21st Century.”  As part of the launch party, Hogan Lovells partner Amy Roma sat down with Tom and three other distinguished guests for a panel on the future of nuclear power.  The other panelists included: Senator John Warner (former Secretary of the Navy; five term Virginia Senator), Mike Wallace (current Board member for Emirates Nuclear Energy Corporation; former Constellation Energy COO and Vice-Chairman), and Jim McDonnell (Director of DHS’ Domestic Nuclear Detection Office).

The book has drawn strong critical acclaim. Richard Rhodes, the Pulitzer Prize recipient for The Making of the Atomic Bomb, calls this publication “the best book” written on the subject of commercial nuclear power. The book makes clear that “[n]uclear power is not an option for the future but an absolute necessity.” It also explains that:

Fortunately, a new era of growth in this energy source is underway in developing nations, though not yet in the West. Seeing the Light is the first book to clarify these realities and discuss their implications for coming decades. Readers will learn how, why, and where the new nuclear era is happening, what new technologies are involved, and what this means for preventing the proliferation of weapons. This book is the best work available for becoming fully informed about this key subject, for students, the general public, and anyone interested in the future of energy production, and, thus, the future of humanity on planet Earth.

The panel provided an exciting opportunity to marry the research and conclusions from Seeing the Light with the experiences and insights of those working to make the future of nuclear power—including next generation nuclear power—a reality. Some of the many insights from the panel included the following:

  • National Security Should Be Considered, as well as Climate Change: Seeing the Light clearly explains that the urgent threat of climate change requires nuclear power to work alongside renewables. In addition, the panel discussed at length that national security is also an important concern, and one that national leaders may also readily get behind. From an inability to power the nuclear navy to losing our seat on the table with regards to non-proliferation, the panelists repeatedly brought home the importance of having a robust commercial nuclear industrial base to keep the country at the cutting edge. The panelists expressed grave concern that a downward spiral in nuclear investment and talent threatens the U.S. on multiple fronts.
  • Effective Non-Proliferation Requires Peaceful Nuclear Power: While the book argues that the global nuclear non-proliferation treaties of the 20th century were not just giveaways from non-weapons states to the nuclear weapons states. Instead, they were agreements that in exchange for not engaging in nuclear weapons, non-weapons states would have assistance to develop a robust commercial, peaceful nuclear industry. And the U.S. has an obligation to these parties to assist them with their programs.  Moreover, the lack of a U.S. presence in foreign nuclear programs, weakens the U.S. voice on non-proliferation issues.
  • Ensuring New Nuclear Meets Top Safety and Security Standards. The panelists also all agreed that the use of U.S. technology abroad means that U.S. standards for safety and security, which are the highest in the World, will be incorporated into foreign reactor programs.
  • Top-Level Government Support Needs To Complement Private Action: All the panelists also agreed that the development of nuclear power in the 20th century was a true public-private partnership, with both Congress and the Executive Branch offering support. And this partnership delivered dividends countless times over back to the government and taxpayers. With a new wave of reactors moving forward around the world and the next generation of nuclear power on the horizon, the panelists agree that this needs to happen again, and that circumstances are right to make real progress towards this in the near future.

For more on the book, the panel, or on the potential role nuclear power can play in our future, please contact the authors.

The U.S. Department of Energy’s (DOE’s) Gateway for Accelerated Innovation in Nuclear (GAIN) announced last week its second round of awards.  A number of these awards have gone directly to advanced reactor startups, and they hope to push forward a number of technologies related to advanced reactors or next-generation light-water reactors.

We wanted to take a little closer look at the awards in this post.  To explain, GAIN awards come in the form of “vouchers” which provide awardees “with access to the extensive nuclear research capabilities and expertise available across the U.S. DOE national laboratories complex.”  Some of the advanced reactor ventures that received vouchers include Elysium Industries, Kairos Power, Muons, Oklo, Terrestrial Energy, Transatomic Power, and others, covering a broad swatch of different reactor types.  One nuclear battery startup, named MicroNuclear, also received an award—nuclear battery technologies have been gaining traction, with the “U-Battery” consortium engaging with the Canadian Nuclear Safety Commission for pre-licensing review in March of this year.  In addition, a number of consulting and engineering companies also received awards, and the results from those projects could benefit a number of different reactor designs.

The most popular participating DOE laboratories are the Idaho, Argonne, and Oak Ridge National Laboratories, although Sandia and Pacific Northwest National Laboratories also will be partnering with certain awardees.  About half of the research projects touch on molten salt reactor technologies, focusing on topics such as different salt chemistries, thermal hydraulics, and waste reprocessing.  A number of awards focus on metal-cooled fast reactors (including regulatory support), and modeling and simulation issues.  Five projects also have a focus on light-water reactor technologies, exploring areas such as small modular reactor concepts and waste reprocessing.

For any questions related to next-generation nuclear reactors or the GAIN initiative, please contact the authors.

Two long-awaited opportunities for public input into the development of advanced reactors are coming up – the third NRC-DOE Advanced Reactor Workshop, and a two-day NRC public meeting on advanced reactor regulatory policy.  We provide some information about both events below.

Next week, from April 25-26, is the third NRC-DOE Advanced Reactor Workshop, to be held in Rockville, Maryland.  The conference is focused on improving efficiency in the development and licensing of advanced reactors.  Specific topics will include:

  • Recent NRC and DOE initiatives;
  • Regulatory review process options and safety-focused reviews;
  • Modeling and testing in support of the reactor licensing process; and
  • Reactor vendor licensing strategies and issues.

The full workshop agenda can be found here.  Some interested pre-reading for attendees includes the NRC’s recently published advanced reactor design criteria guidance, as well as the summaries and presentations from the prior two NRC-DOE workshops (from September 2015 and June 2016).  Although online registration has closed, the workshop is open to the public and interested members can reach out to the agency contacts listed here to find out how to attend (note, the registration page says registration is encouraged but not required).

The following week, from May 3 to May 4, is the NRC’s Public Meeting/Webinar on Possible Regulatory Process Improvements for Advanced Reactor Designs.  The meeting will circle around the follow topics:

  • Physical security requirements;
  • Defining licensing basis events;
  • Probabilistic risk assessments (PRA) & containment performance criteria;
  • Prioritization of policy issues;
  • Potential use of standard design approvals; and
  • Issues arising from the NRC-DOE Advanced Reactor Workshop.

For the discussion on physical security scheduled for the morning of Wednesday, May 3, the NRC has provided a link to a Nuclear Energy Institute (NEI) white paper for a proposed revision to the NRC’s physical security requirements set forth in 10 C.F.R. Part 73.  The NEI white paper, which was issued in December 2016, argues that the new proposed Part 73 requirements should recognize the enhanced engineered safety and security features of many advanced reactor technologies, and enable these technologies to demonstrate to the NRC that they meet the new physical security “performance capabilities” set forth in the proposed rule.  Such a change, NEI argues, would make the NRC licensing process for these technologies more efficient.  Interested readers may also want to check out our summary of the NRC’s recently issued physical and cyber security draft guidance document.

The NRC has also provided a link to an April 2017 DOE-Southern Company white paper that seeks to modernize the technical requirements for licensing advanced reactors to be more risk-informed and performance-based.  The NRC intends to discuss this paper in the afternoon on Wednesday, May 3.  The NRC plans to address PRA on the morning of Thursday, May 4, and “various policy issues” in the afternoon of Thursday, May 4.  This meeting can be attended in person or through teleconference.

We strongly encourage the advanced reactor community to participate in these events.  As recently noted by the trade press, the regulatory framework for advanced reactors is being flushed out now, long before reactors will be built.  Major decisions such as development of design criteria and staged review processes are being made in the near term, unfortunately under tight budgets.  Engagement today can save years later by helping educate the NRC and DOE as to the most optimal regulatory path forward.

If there are any questions as to the above, please do not hesitate to contact the authors.

Welcome to “New Nuclear,” a blog following legal and policy issues pertaining to the development of next generation nuclear power reactors in the United States. This blog is written by lawyers from Hogan Lovells who work in the nuclear industry, believe in its mission, and are passionate about seeing the nuclear dream of ubiquitous, affordable, safe, reliable, zero-carbon energy come to pass.  We hope what we write about will be useful to designers and technical leaders trying to stay up to date on legal developments that affect them, but we also want our posts to help inform members of the public interested in nuclear power generally.

More about “New Nuclear” and its authors can be found in our About page.  We have been at this for a while, writing on legal issues dealing with next-generation nuclear power technologies on the Hogan Lovells’ Focus on Regulation blog for some time—many of those posts have been transferred over to our new platform.  But for the inaugural post of the new blog, we wanted answer a simple question: what is “New Nuclear”?

It is known to many that nuclear power generates roughly 60% of the United States’ zero-carbon energy, is a reliable source of power that can operate in conditions that require other plants to shut down, and provides for thousands of high-paying jobs.  But what is perhaps less known is that today’s nuclear industry is undergoing dramatic change behind the scenes.  It is being reinvigorated by dozens of new entrants, large and small, each bringing new designs and new purpose to what used to be an sector dominated in the United States, and for the most part globally, by only two reactor designs—generally known as pressurized water reactors (PWRs) and boiling water reactors (BWRs).  Both designs use fundamentally the same reactor technology that relies on water cooling, active power core cooling systems and plant construction on-site.

 

In the United States and around the world today, there are well over fifty new ventures to develop nuclear power reactors, covering a variety of designs.  Some are government, some privately-funded.  Some want to use liquid metal coolants, and some want to use gaseous helium.  Some want to have liquid uranium (or thorium) fuel, and some want to use nuclear waste as fuel.  There are numerous fusion ventures as well.  These ventures have moved from the whiteboard to the machine shop.  Terrapower, which promises to use nuclear waste to power its reactors, is supported by Bill Gates and has garnered multiple rounds of financing.  NuScale, which promotes a factory-built-and-shipped small modular reactor design, has submitted a design certification application to the U.S. Nuclear Regulatory Commission.  Lightbridge, which is debuting a completely new type of uranium fuel rod, is publicly listed and has entered into joint development agreements with large nuclear service providers.  Tri Alpha Energy has raised 500 million dollars for its fusion energy start-up.

 

What they all have in common, and what “New Nuclear” covers, is that they are all firsts in nuclear power.  There are a number of outlets that cover important events affecting the current fleet of nuclear power reactors or the industry generally, such as the Nuclear Energy Institute’s Nuclear Notes.  We aim to serve as a legal-focused complement covering activities and events that could affect first-movers like those above, in the United States and around the world.  We hope it will be useful to those that participate in this area, and enjoyable for everyone.

If you have any questions or comments, please do not hesitate to contact the authors.

On Friday, February 3, the U.S. Nuclear Regulatory Commission (NRC) published in the Federal Register draft “Guidance for Developing Principal Design Criteria for Non-Light Water Reactors.”  This draft new regulatory guide (identified as DG-1330) helps explain how the NRC’s “general design criteria” for traditional light-water nuclear power plants could be applied to non-light water (a.k.a. “advanced”) nuclear reactor design submissions, enabling applicants to develop principal design criteria as part of their regulatory filings.  Comments are due on the guidance by April 4, 2017.

The draft regulatory guide is a significant publication of over a 100 pages.  It provides a background of the NRC’s policy on advanced nuclear reactors, the role of general design criteria in reactor licensing, and joint NRC-U.S. Department of Energy (DOE) efforts to tailor the agency’s general design criteria to advanced reactors.  The general design criteria for traditional nuclear power plants are found at Appendix A to 10 C.F.R. Part 50, the chapter of the Code of Federal Regulations that contains the NRC’s primary regulations on nuclear power plant design.

But most interesting are the three appendices, which propose (A) technology-neutral design criteria for advanced reactors generally, (B) technology-specific design criteria for sodium-cooled fast reactors (SFRs), and (C) technology-specific design criteria for modular high temperature gas-cooled reactors (mHTGRs).  The appendices contain not only the design criteria, but the “NRC Rationale” explaining why/how they were adapted from the general design criteria.  In addition, pages 13 to 20 of the draft guide compare the three design criteria to the current set tailored to light-water reactors.

This is an important document that deserves close attention by the advanced reactor community.  It provides one of the first detailed insights into how the NRC views advanced reactors, how far it is willing to step away from the general design criteria framework, and what it finds of importance from a safety perspective for advanced reactors.

Notably, the basic approach taken by the NRC appears to mimic what the DOE suggested in its 2014 report, “Guidance for Developing Principal Design Criteria for Advanced (Non-Light Water) Reactors.”  There, the DOE likewise “proposed a set of advanced reactor design criteria” to serve in lieu of the general design criteria, but also proposed separate design criteria for SFRs and mHTGRs.  As explained by the NRC here, the DOE’s rationale was “that the safety objectives for some of the current [general design criteria] did not address design features specific to SFR and mHTGR technologies (e.g., sodium or helium coolant, passive heat removal systems, etc.).  Additional design criteria were developed to address unique features of those designs.”

It should be mentioned that this guide is just that—guidance.  As made clear in the draft guide, the proposed design criteria “are intended to provide stakeholders with insight into the staff’s views on how the [general design criteria] could be interpreted to address non-LWR design features,” but they are not binding.  It is still on the applicant to develop principal design criteria for her application, “considering public safety matters and fundamental concepts, such as defense in depth, in the design of their specific facility and for identifying and satisfying necessary safety requirements.”

Moreover, the regulatory framework for advanced reactors is still in flux.  As noted in a prior blog entry, this January legislation was introduced in Congress “to spur technology development related to advanced reactors.”  Recently, on January 23, separate legislation “to provide regulatory certainty for the development of advanced nuclear energy technologies” passed the House of Representatives.  This latter bill, entitled the “Advanced Nuclear Technology Development Act of 2017” is related to a prior bill that passed the House of Representatives in 2016, and was examined by our team here.

The advanced reactor industry is certainly picking up steam.  Terrestrial Energy earlier this month informed the NRC that it plans to file a license application for its molten salt reactor in 2019.  LeadCold around the same time announced a $200 million deal to develop its lead-cooled reactor.  We hope the NRC’s actions here evidence continued support for the advanced reactor community, and a willingness to recognize the unique safety and security benefits these new designs bring.

Please feel free to contact the authors with any questions.

In late December the staff of the U.S. Nuclear Regulatory Commission (NRC) issued an updated and seemingly final “NRC Vision and Strategy Statement” for non-light water (a.k.a. advanced) reactors (Final Vision Statement).  We previously reviewed the Draft Vision Statement, as well as comments received on it from advanced reactor companies, in an October blog post.  While much of the vision statement remains the same in the final version, in core areas there are significant departures from the draft.

As we discussed in the October post, the core aspects of the Draft Vision Statement were the creation of a “conceptual design assessment” (CDA) and staged standard design approval process for advanced reactors.  In the Draft Vision Statement, these were found in Section 5, titled “Non-LWR Regulatory Review Options and Flexibilities.”  This section also provided a helpful overview of the NRC regulatory process and ways it could be applied to advanced reactors.  In the Final Vision Statement, this section has been completely removed.  Also eliminated are the sample deployment timelines for advanced reactors under the 10 C.F.R. Part 50 and Part 52 processes, which were found in Section 6.

These changes may be the result of comments received on the Draft Vision Statement, also discussed in our October post.  Commenters on the Draft Vision Statement, which included the Nuclear Energy Institute, Transatomic Power, and X-energy, generally criticized the NRC process as too slow.  They instead proposed revised timetables that anticipated advanced reactors under construction in the 2020s.  Certain commenters indicated that the NRC should be prepared to receive pre-application submissions in just a couple years from now, much earlier than estimated in the Draft Vision Statement.  The commenters also challenged the CDA and staged review process, arguing that they must have meaningful results to be justified.  Transatomic Power further recommended that the CDA concept be ditched.

The Final Vision Statement still advertises that a CDA and staged review process may be implemented for advanced reactors in the future, but now there is no formal discussion of what they may look like.  The Final Vision Statement, as with the draft, only suggests that any such approaches will remain, at least initially, within the scope of the current regulatory environment: “Activities in both of these areas are initially expected to be within the scope of the current regulations, with possible development of a revised regulatory framework for non-LWRs in the long-term.”

In lieu of specific timelines, the Final Vision Statement now states more generally that “the NRC plans to achieve its strategic goal of readiness to effectively and efficiently review and regulate non-LWRs by not later than 2025,” in order to allow for construction “by the early 2030s.”  It acknowledges that the advanced reactor community may wish to submit design applications and start construction “in the near-term”—i.e., earlier than the U.S. Department of Energy’s (DOE’s) goal of having two non-LWR designs reviewed and ready for construction in the early 2030s.  But the Final Vision Statement does not address the issue in detail.  Instead, it only states: “the NRC will work with vendors on design-specific licensing project plans and the NRC may accelerate specific readiness activities, as needed.”  As in the Draft Vision Statement, the NRC states that it is capable of reviewing such applications earlier, but these “will not benefit from the efficiencies gained as the non-LWR vision and strategies are implemented.”

Additional changes were made in the Final Vision Statement, particularly in the Section 4 discussion of agency near-, mid-, and long-term strategies to enhance technical readiness.  These changes focus the strategies a little more on identifying regulatory gaps as well as on improving readiness to review fuel fabrication and fuel cycle issues related to advanced reactors.  These may have been in response to comments, discussed in our October post, that the Draft Vision Statement left out a sufficient discussion of fuel fabrication facilities.  Nonetheless, the NRC strategies discussed in the Final Vision Statement remain at a very high level.

The Final Vision Statement appears to reflect that the NRC took in the criticisms to its draft CDA and staged review process for advanced reactors, but it leaves no clear replacement for the removed information.  In addition, the Final Vision Statement reflects that the NRC is still sticking to the DOE timeline for development of advanced reactors, which envisions construction only in the early 2030s, although it leaves open the door for earlier action if applications do actually come in.

This timeline is likely to be disappointing to many advanced reactor companies who anticipate submitting applications to the NRC sooner than the DOE timetable expects.  To the extent the advanced reactor community wants to seek earlier action from the NRC, it should continue to communicate with the agency about anticipated timelines for specific projects.   More generally, the community can submit formal comments and letters, as well as participate in NRC-sponsored events, such as the March 2017 NRC Regulatory Information Conference, and the April 2017 DOE-NRC Advanced Reactor Workshop.

For more information about the NRC Final Vision Statement on advanced reactors, or about advanced reactor and nuclear power licensing in general, please feel free to contact the authors.

As part of the DOE’s Gateway for Accelerated Innovation in Nuclear (“GAIN”) initiative, this month the DOE and NRC published a Memorandum of Understanding (MOU) that sets forth a process by which the two agencies will work together to help non-light water (“advanced”) nuclear reactors work through the nuclear licensing process.

The MOU establishes contacts at each agency and a process by which the NRC will keep the DOE closely informed about its licensing process for advanced reactors, as well as any changes that occur.  But perhaps most of interest, the MOU establishes a framework by which the DOE can answer basic regulatory questions that future advanced reactor applicants may have, concerning the “NRC’s regulatory requirements and activities.”  Moreover, if DOE cannot answer the question, in certain cases it can e-mail the NRC and expect an answer back within two weeks.  Questions that are asked and answered will be compiled on a DOE-hosted “FAQ” website.

It remains to be seen exactly how this program will shape out, and whether the DOE will be able to provide substantive assistance to advanced reactor licensees.  But it represents an exciting development for today’s nuclear entrepreneurs, which are seeking a means by which to understand the complex regulatory landscape before then.  It also continues a trend at DOE and in the federal government generally to engage in non-financial assistance—instead of simply giving cash awards to entrepreneurs, the government can leverage its resources, expertise, and connections to provide unique opportunities to entrepreneurs that money normally could not buy.

For more questions about advanced nuclear reactors, the GAIN initiative, or how the federal government can assist the development of nuclear power, please contact the authors.