Activity across the government has put advanced nuclear reactors center stage early this year.  With the signing of the Nuclear Energy Innovation and Modernization Act, hearings on Capitol Hill, and the release of a Department of Defense (DOD) Request for Information (RFI) for small mobile reactors, it is clear the federal government sees advanced reactors as a critical part of our country’s future energy portfolio, and that investment in regulatory reform along with public-private R&D is key to making this future a reality.

Nuclear Energy Innovation and Modernization Act: The Nuclear Energy Innovation and Modernization Act (NEIMA) was signed into law on January 14, bolstered by strong bipartisan support.  NEIMA is focused on regulatory reform strategies aimed at creating a more efficient licensing structure for advanced reactors.  One of the bill’s cosponsors touted the signing as “critical for the revitalization of our nation’s nuclear energy industry.”  For more information see our blog post Nuclear Reading to Kick Off the New Year.

Senate Appropriations Committee Hearing on New Nuclear Technologies: The Senate Appropriations Subcommittee on Energy and Water held a hearing on January 16 focused on the cost and safety advantages of advanced nuclear reactors.  Witnesses included the Principal Deputy Assistant Secretary of the Department of Energy (Edward McGinnis), the Director of Oak Ridge National Labs (Dr. Thomas Zacharia), and the Vice President of Nuclear Technologies and Materials at General Atomics (Dr. Christina Back). Although, the hearing touched on a number of issues, it focused on how new nuclear technology address financial and safety concerns associated with traditional nuclear reactors.

Dr. Zacharia touted his lab’s Transformational Challenge Reactor program as a change agent.  The program’s goal is to design, fabricate, and test the core of a nuclear micro-reactor within the next five years. The key to success, according to Dr. Zacharia, is additive manufacturing, which includes 3-D printing, digital manufacturing, and the use of digital prototypes.  Dr. Back from General Atomics also emphasized the use of advanced digital technology, but she focused on its applicability to reactor licensing and testing.  Dr. McGinnis summed up the goal of the hearing when he noted in his statement that “with a focused and sustained collaborative private-public partnership approach to support early-stage R&D…we can indeed revive, revitalize, and expand our Nation’s nuclear energy sector and restore our global nuclear energy leadership.”

DOD Request for Information on Small Modular Reactors: On January 18, the DOD Office of the Under Secretary of Defense for Research and Engineering put out a request for information on small mobile reactors.  According to the RFI, small mobile reactors would fill a need identified by the Defense Science Board in 2016 for powering forward operating bases—adding that small mobile reactors can “fundamentally change the logistics of forward operating bases” while serving other benefits such as in addressing humanitarian crises.  The RFI explains that public input could be used as the basis for future requests under the DOD’s prototype authority in 10 U.S.C. § 2371b, including to seek development of up to three prototype reactor designs.

The RFI provides discrete specifications for its ideal small mobile reactor—it can produce 1-10 megawatts for three years without refueling, can be installed and operating within 72 hours, can be transported by military platforms such as a C-17 aircraft, requires no manpower to operate, and incorporates passive safety features. Many of these characteristics align with the 2018 U.S. Army-commissioned Study on the Use of Mobile Nuclear Power Plants for Ground Operations, discussed in our last blog post.  Responses to the RFI are due February 8.

For more about any of the above topics, please contact the authors.

Happy New Year!  As we start off 2019, we want to motive the nuclear community by sharing a few legal updates and popular reports that have come out around the end of the last year.

  • Nuclear Energy Innovation and Modernization Act (S.512, NEIMA):  On December 21, Congress adopted NEIMA, legislation that addresses NRC licensing activities for current and next-generation nuclear reactors—and which the President is expected to sign in due course.  The text of the enrolled bill can be found here.  The legislation has a number of sections devoted to budget efficiency and reigning in NRC licensing fees “to the maximum extent practicable,” but also contains a number of provisions pushing the agency to develop a new regulatory approach for advanced reactors.  These include:
    • Prompting the NRC to “Develop and implement” a Staged Licensing Program (along with conceptual design assessments and licensing project plans).  The legislation also pushes the NRC to hasten research and test reactor licensing, further adopt risk-informed regulatory processes, and train staff and hire experts to support licensing activities.  The legislation requires the NRC to provide reports to Congress to monitor agency progress.  Many of these steps are things the NRC already is attempting—for example, the NRC’s advanced reactor licensing guidance, such as its “Regulatory Review Roadmap For Non-Light Water Reactors,” already speak to staged licensing, conceptual design reviews, and project plans.  However, NEIMA authorizes $14,420,000 for this effort per year, which if added beyond current allocations could help hasten all of these activities.
    • Requiring the NRC to Report on Creating a New Reactor Licensing Framework.  As opposed to the above activities, which would occur largely under the current regulatory framework, the legislation would also ask the NRC to draft a report to Congress on developing a new, technology-inclusive regulatory framework for advanced reactor licensing, to be completed by 2027.  This builds on suggestions already put forward by the NRC staff for a “10 CFR Part 53” process for licensing advanced reactors, which is also highlighted in an article recently co-authored by one of the writers of this blog.
    • Amending the Atomic Energy Act to Allow Research/Test Reactors to Sell Energy.  This interesting provision would amend 42 USC 2134(c), one of the core elements of the Atomic Energy Act, to permit licensing of a broader variety of research and test reactors under a “minimum amount of regulation”—including research and test reactors that also generate revenue from other sources, such as through sales of electricity (although such sales would be capped at a percent of annual facility ownership & operating costs).  A goal of this provision appears to be to enhance the economics for building research and test reactors, long considered a key roadblock to advanced reactor licensing.

There is much more to this legislation than described here, and we hope it will have a significant effect on advanced reactor licensing in the United States.

  • DOE to Use 2 of NuScale’s First 12 Modules:  The same time as NEIMA moved through Congress, DOE announced a memorandum of understanding (MOU) to draw on 2 of the planned 12 modules of NuScale’s first reactor project, for DOE research and facility use.  This MOU concerns NuScale’s first planned reactor project, to be procured by Utah Associated Municipal Power Systems (UAMPS) and sited at Idaho National Laboratories (INL).  According to the DOE press release, one module would “be designated strictly for research activities (referred to as the Joint Use Modular Plant or JUMP program),” focusing on development of integrated energy systems. The second module would then be used to provide power to INL under a Power Purchase Agreement (PPA).
  • National Academies Fusion Report:  In Mid-December, the  National Academies of Sciences, Engineering, and Medicine (NAS) issued a detailed new report on nuclear fusion, entitled the Final Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research.  It highlights the significant progress made in fusion research, and provides guidance on a national strategy to achieve practical fusion energy.  Critically, along with supporting the multi-national International Thermonuclear Experimental Reactor (ITER) project in France, the report recommends a separate national effort “to build a compact pilot plant that produces electricity from fusion at the lowest possible capital cost.”  The report is technically focused, but also briefly discusses regulatory matters, pointing to past DOE safety guidance developed for the ITER project as a starting point.  It also posits that “[s]iting and licensing strategies for such facilities should be developed well in advance so as not to delay the progress toward the compact fusion pilot plant.”  Questions as to the final regulatory framework and regulator for commercial fusion facilities are still very much under consideration, although the report considers a transition to the NRC as the regulator for commercial fusion power facilities.

It also seems worth highlighting two other reports that came out earlier in 2018, that have been trending lately in the nuclear community.

  • The first is a U.S. Army-commissioned Study on the Use of Mobile Nuclear Power Plants for Ground Operations.  It is a thorough report that among other things, details past use of mobile nuclear reactors by the U.S. Army, including for providing power and fresh water at the Panama Canal Zone.  It also recommends the Army pursue mobile nuclear power plant acquisition through the National Defense Authorization Act, and suggests discrete performance requirements for any such plant.
  • The second is an MIT report, The Future of Nuclear Energy in a Carbon-Constrained World.  It covers a number of topics, and has a whole chapter dedicated to nuclear licensing issues.  Stepping back, a unique contribution of the report appears to be the way it leads with a very detailed discussion of nuclear power plant construction costs (including the huge costs incurred from site-specific construction activities), and uses this analysis to then drive many of its technical and regulatory recommendations: including on the use of modularized construction methods, regulatory standardization and harmonization, and government support for rapid testing and prototyping of new reactor designs—all with a general aim to improve the economics for advanced reactors.  One of the report’s principle authors, Jacopo Buongiorno, discusses this further in his Titans of Nuclear podcast.

For more about any of the above topics, please contact the authors.