Earlier this month, a leading group of Canadian power companies and government entities (although not the nuclear regulator) issued a “Canadian SMR Roadmap,” an 89 page plan for Canada to become a leader in small modular and advanced reactor development (there is also a smaller executive summary).  Although the roadmap takes a look at a number of technical, commercial, and legal issues with SMR deployment in Canada, this entry focuses on some of the regulatory reform proposals outlined in the roadmap—to better understand what Canadian stakeholders think are the biggest hurdles to licensing advanced reactors above the 49th Parallel.  We discuss four regulatory reforms suggested in the roadmap, many of which compare with efforts going on here in the United States.

  • Environmental Reviews:  A key issue in the Canadian SMR Roadmap was reform of environmental impact reviews.  The roadmap strongly advocates for Canada to pass a revised Impact Assessment Act, legislation before the Canadian Parliament to modernize the national environmental review process.  In addition, the roadmap authors appear to advocate for additional tweaks to the environmental review process—including potentially exempting “applications to construct, operate, and decommission SMRs equal to or below an electric capacity of 300 MWe” from environmental reviews, on the grounds that such reactors have low environmental risk.  While there are numerous efforts ongoing in the US to reform US federal environmental review policies, exempting SMRs from US National Environmental Policy Act reviews has not been widely advocated for (although it is something the authors have explored).
  • Security:  The Canadian SMR Roadmap pays special attention to security at SMRs, noting that “the current regulations would require SMRs to incorporate security infrastructure comparable to today’s operating full scale nuclear power plants.”   The roadmap advocates for reform in this area to remove prescriptive requirements in favor of risk-based regulation.  Interestingly, the US Nuclear Regulatory Commission (NRC) may be ahead of the curve on this issue, with the NRC staff earlier this year sending to the NRC Commission an options paper on tailoring physical security requirements for SMRs and advanced reactors.  On November 19, the NRC Commission  approved the NRC staff moving forward with a limited-scope rulemaking to generally reduce excess physical security requirements for small modular and advanced reactors, given their inherent safety features.
  • Risk-Informed Rulemaking:  Apart from its specific focus on the security regulations, the Canadian SMR Roadmap advocates for the Canadian nuclear regulator, the Canadian Nuclear Safety Commission (CNSC), to take a more risk-informed view to regulation, particularly on issues “such as staff training and emergency response.”  In regards to emergency response, the roadmap argues that the CNSC should adopt regulations “based on risk-informed criteria, not an arbitrary low [10MWt] limit on reactor thermal power.”   This seems to align with the NRC’s efforts to adopt risk-informed regulation for emergency planning for next-generation reactors, with the US regulator already moving forward with a rulemaking in this area.
  • Nuclear Energy Advisory Council:  The roadmap advocates for the creation of a Nuclear Energy Advisory Council (NEAC) to give direction to Canadian SMR nuclear policy.  The NEAC would be “composed of senior executives and ministers” and meet annually to focus on implementation of the SMR roadmap and related action plans.  This strikes a chord with a policy proposal previously put forward by the blog authors in the paper Back from the Brink: A Threatened Nuclear Energy Industry Compromises National Security.  This paper advocates for the US to adopt its own Nuclear Energy Advisory Council, also comprised of business leaders and government officers—although with more of a strategic advisory versus implementation role.  Compared to the Canadian version, the US NEAC would “advise the President and National Security Council on the commercial nuclear industry, mirrored after the National Infrastructure Council.”

The Canadian SMR Roadmap is a promising document that helps highlight Canada’s growing potential role in SMR and advanced reactor development.

And on the nuclear strategy front in the US, the Senate on Thursday November 29 is holding a hearing that will cover in part the Nuclear Energy Leadership Act (S 3422),, a significant piece of legislation that can help close many gaps in advanced reactor development (including testing and fuel cycle development).  We wrote about this important piece of legislation in a past blog entry available here.  The Nuclear Energy Leadership Act is designed to help the United States return to the lead in nuclear energy technology leadership.  The bill sponsors explain that the US has yielded this position to Russia and China–weakening our energy security, economic competitiveness, and national security.  The bill covers a range of activities, including funding research and development, and accelerating the deployment of advanced nuclear energy technologies.

Notably, both the Canadian and US activities show that advanced reactor developments warrant strategic government support at a national level.

For more about the issues discussed in this entry, please contact the authors.

The U.S. Nuclear Regulatory Commission (NRC) recently released a staff paper-SECY-18-0096-seeking Commission approval of a new proposed methodology for establishing “functional containment” performance criteria for non-light water reactors (non-LWRs).  This methodology would step away from deterministic containment design parameters and embrace a concept of “‘functional containment’ as a barrier, or a set of barriers taken together, that effectively limits the physical transport of radioactive material to the environment.”  If approved, the proposed methodology would be a critical step in developing a framework for licensing non-LWR designs.

Many current NRC regulations and guidance documents are prescriptive in nature and focus on problems unique to LWR technology—that is, the regulations tell you squarely what you need to do, providing limited opportunity to meet the end objective of the regulation in a different way.  For example, NRC guidance in NUREG-800 Chapter 3 provides detailed requirements for the strength and thickness of barrier concrete.  As the NRC has started to grapple with non-LWR designs, it has shifted its focus to more risk-based and performance-based methodologies—that is, the NRC would define the objective, and an applicant would have more flexibility in showing the NRC how its design meets the objective.  Under the performance-based methodology proposed in the SECY paper, the requirements imposed on physical barriers would be determined based on the risk of migration of radioactive materials and the other safety measures being used for containment.

The new methodology proposed by the NRC staff, therefore, does not prescribe the traditional structures, systems, and components (SSCs) required for functional containment, but rather focuses on performance requirements.  This methodology will give non-LWR designers more flexibility and provide a more integrated approach for developing a regulatory framework for non-LWRs.

A key component of the methodology is the “identification and categorization of licensing-basis events.”  The NRC staff recommends using the set of event categories initially developed under the Next Generation Nuclear Plant Project and used in the Licensing Modernization Project as the baseline for developing performance criteria.  Based on these event categories, the performance criteria will be developed to meet fundamental safety requirements.  Once the performance criteria have been determined, it appears the developers of non-LWRs would consider the potential consequences associated with the identified events and assess the cost and benefits of potential SSC options to prevent or mitigate the migration of radioactive material.  The NRC staff is calling this approach the “Barrier Assessment” or “Bow Tie” method, as depicted in the figure below:

If approved, the prosed methodology for functional containment performance criteria will be incorporated into the draft guidance the NRC staff is currently compiling for non-LWR licensing.

If you would like more information please contact the authors.

A bipartisan group of nine U.S. senators has introduced the Nuclear Energy Leadership Act (NELA) (S 3422), a bill designed to help the United States return to its lead in nuclear energy technology.  The bill sponsors explain that the U.S. has yielded this position to Russia and China–weakening our energy security, economic competitiveness, and national security.  The blog authors, in collaboration with the Center for Strategic and International Studies, have recently published on just this issue in “Back from the Brink: A Threatened Nuclear Energy Industry Compromises National Security” (Jul. 2018).

The bill covers a range of activities to fund research, development and accelerated deployment of advanced nuclear energy technologies.  The one-page summary of the bill issued by the Senate Committee on Energy and Natural Resources explains–

To reestablish global leadership, the U.S. must have a healthy nuclear industry capable of designing and deploying the most advanced reactor concepts in the world at a competitive price. As we look for clean, safe, reliable, flexible, and diverse power sources to meet the nation’s energy needs, advanced reactors will play a critical role in that mix.

Notably, the bill would:

  • Direct the U.S. government to enter into long-term power purchase agreements (PPAs) with nuclear reactors.
  • Promote the development of advanced reactors and fuel by strategically aligning U.S. government and industry interests, which is intended to enable U.S. developers to compete with their state-sponsored competitors from Russia and China.
  • Construct a fast neutron-capable research facility, which is crucial to test important new nuclear technologies and demonstrate their safe and reliable operation. Currently the only two facilities in the world like this are in Russia and China.
  • Develop a source of high-assay low-enriched uranium, which is the intended fuel for many advanced reactor designs, from U.S. government stockpiles. Again, both China and Russia have these capabilities domestically, but the U.S. does not.

Section by Section Breakdown

The Senate Committee on Energy and Natural Resources also released a section-by-section analysis of NEAL, which we summarize below, paying particular attention to the PPA provision, which could be a near-term game changer for the advanced reactor industry.

  • S. Government Power Purchase Agreements (Sections 2 and 3). Notably, the bill would create a pilot program for the U.S. government to enter into long-term PPAs with commercial nuclear reactors.  Under the bill—
    • The Secretary of Energy must consult and coordinate with other Federal departments and agencies that could benefit from the program, including the Secretary of Defense and the Secretary of Homeland Security.
    • At least one PPA has to be in place with a commercial nuclear reactor by the end of 2023.
    • The maximum length of the PPA is extended from 10 to 40 years, and the PPAs can be scored annually. Currently, nuclear energy is at a disadvantage when competing for federal PPA, due to a law that pre-dates commercial nuclear power and limits PPAs to 10 years. Initial capital costs for nuclear reactors are paid for over a period beyond ten years, which means 10-year PPAs do not work for nuclear projects, so this change would be an important development for the industry.
    • In carrying out the pilot program, the Secretary of Energy must give special consideration to PPAs for “first-of-a-kind or early deployment nuclear technologies that can provide reliable and resilient power to high-value assets for national security purposes or other purposes…in the national interest, especially in remote off-grid scenarios or grid-connected scenarios that can provide capabilities commonly known as ‘islanding power capabilities’ during an emergency scenario.”

The other provisions of the bill, as described in the section-by-section analysis are summarized below.

  • Advanced Nuclear Reactor Research and Development Goals (Section 4). In order for the American nuclear industry to compete with state-owned or state-sponsored developers in rival nations – especially China and Russia – significant collaboration between the federal government, National Labs, and private industry is needed to accelerate innovation. This provision directs the Department of Energy (DOE) to establish specific goals to align these sectors and send a strong and coherent signal that the U.S. is re-establishing itself as a global leader in clean advanced nuclear technology.
  • Nuclear Energy Strategic Plan (Section 5). There has not been a cohesive long-term strategy for the direction of U.S. nuclear science and engineering research and development policy across administrations.  This section requires DOE’s Office of Nuclear Energy to develop a 10-year strategic plan that supports advanced nuclear R&D goals that will foster breakthrough innovation to help advanced nuclear reactors reach the market.
  • Versatile, Reactor-Based Fast Neutron Source/Facilities Required for Advanced Reactor R&D (Section 6). For the U.S. to be a global leader in advancing nuclear technology, we need the ability to test reactor fuels and materials. Currently, the only machines capable of producing a fast neutron spectrum are located in Russia and China. This measure directs DOE to construct a fast neutron-capable research facility, which is necessary to test important reactor components and demonstrate their safe and reliable operation – crucial for licensing advanced reactor concepts.
  • Advanced Nuclear Fuel Security Program/High-Assay Low-Enriched Uranium Availability (Section 7). A healthy domestic uranium mining, enrichment, and fuel fabrication capability that meets industry needs is another prerequisite for reestablishing U.S. nuclear leadership. Many advanced reactors will rely on high-assay low-enriched uranium (HALEU), but no domestic capability exists to produce it. This section establishes a program to provide a minimum amount of HALEU to U.S. advanced reactor developers from DOE stockpiles, until a long-term domestic supply is developed.
  • University Nuclear Leadership Program/Workforce Development (Section 8). The nuclear energy industry, the Nuclear Regulatory Commission, and the National Nuclear Security Administration all require a world-class, highly-skilled workforce to develop, regulate, and safeguard the next generation of advanced reactors. This section creates a university nuclear leadership program to meet these workforce needs.

The bill was introduced by  Sens. Lisa Murkowski (R-Alaska), Cory Booker (D-N.J.), James Risch (R-Idaho), Shelley Moore Capito (R-W.Va.), Mike Crapo (R-Idaho), Richard Durbin (D-Ill.), Joe Manchin (D-W.Va.), Sheldon Whitehouse (D-R.I.) and Chris Coons (D-Del.).

For questions on the bill or the links between national security and the commercial nuclear power industry, please contact one of the authors listed below.

The House Committee on Energy and Commerce, Subcommittee on Energy held a hearing February 6, 2018 to discuss the challenges facing America’s nuclear infrastructure, including advanced reactor development.  The hearing was called “DOE Modernization: Advancing the Economic and National Security Benefits of America’s Nuclear Infrastructure.” A video of the hearing can be watched here.

A background memorandum released in advance explained that the hearing would explore the following important topics:

  • National security implications associated with U.S. nuclear leadership and a domestic nuclear energy industry;
  • The outlook for domestic and international development of nuclear energy and application of nuclear technologies;
  • Challenges and opportunities regarding maintaining the components of a domestic nuclear fuel cycle; and
  • Options to develop and deploy advanced nuclear technologies

The hearing witnesses included (their statements are also provided below):

  • Mr. Art Atkins, Associate Deputy Administrator for Global Material Security, U.S. Department of Energy, National Nuclear Security Administration: Witness Statement
  • Mr. Victor McCree, Executive Director of Operations, U.S. Nuclear Regulatory Commission: Witness Statement
  • Mr. Ed McGinnis, Principal Deputy Assistant Secretary, U.S. Department of Energy, Office of Nuclear Energy: Witness Statement
  • Mr. James Owendoff, Principal Deputy Assistant Secretary, U.S. Department of Energy, Office of Environmental Management: Witness Statement
  • Dr. Ashley Finan, Policy Director, Nuclear Innovation Alliance: Witness Statement
  • Ms. Maria Korsnick, President and CEO, Nuclear Energy Institute: Witness Statement
  • The Honorable Bill Ostendorff, Former NRC Commissioner and Distinguished Visiting Professor of National Security, U.S. Naval Academy: Witness Statement
  • Dr. Mark Peters, Director, Idaho National Laboratory: Witness Statement
  • Mr. David Trimble, Director, Government Accountability Office, Natural Resources and Environment: Witness Statement

Summary of Key Issues for Advanced Reactor Community

During his opening remarks, Full Committee Chairman Greg Walden (R-OR) noted that “[a]t root today, is a question of our nation’s capabilities not only to propel nuclear innovation generally, but to ensure an infrastructure that is critical to our economic and our national security.” He promised to align U.S. policy with a changing world: “we must recognize the world looks different than it did at the birth of the nuclear age. Consequently, we must take steps to update the relevant policies. These policies must be forward looking to enable innovation and the development and deployment of new advanced nuclear technologies.”

Once witness questioning began, the Subcommittee quickly honed in on issues facing the advanced reactor community and expressed bipartisan support for U.S. government help to develop and deploy these innovative new designs. Among the issues discussed were the following:

  • SMR commercialization and deployment schedule

The first question asked at the hearing, by Subcommittee Chairman Fred Upton (R-MI), was on small modular reactor (SMR) commercialization and when the U.S. was going to see SMR designs being approved and deployed in the commercial sector. In response, Ed McGinnis, Principal Deputy Assistant Secretary, U.S. Department of Energy, Office of Nuclear Energy explained: “We are at a tipping point,” with the U.S. leading in design development but challenged in deployment of the technologies. He went on to note that NuScale project that can be “game changing” if successfully deployed.

Last year, reactor designer NuScale submitted to the U.S. Nuclear Regulatory Commission the first SMR reactor design certification application  in the United States. The NRC recently approved–in a first of a kind decision–that NuScale would not need a safety-related electrical power system. This means that the NRC believes the reactor can remain in a safe condition in the event it loses electricity. Currently, all nuclear power plants in the U.S. have safety-related electrical power systems. And the fact that NuScale does not need one is a testament to the inherent different nature of SMRs—and the first time the NRC has recognized as such during its review of an application.

On that front, Victor McCree, the NRC’s Executive Director of Operations, explained during the hearing that the NRC’s decision about NuScale reflects a “philosophical” change that will lead to more efficient and effective reviews. Mr. McCree continued on to explain that an NRC approval of the NuScale design would open the market in a way that large reactors cannot, including by being more affordable and improving grid reliability. Mr. McGinnis further explained that with a number of large-scale reactors facing shutdown, getting SMRs into the pipeline is an imperative, and among other things, DOE was working on integrating SMRs with wind turbines and solar plants. With SMRs versatility and fast ramp up ability, Mr. McGinnis explained, SMRs could be paired with renewables to firm up their intermittent power and delivery of emissions free power.

  • Concern with amount of DOE funding to support SMR commercialization and deployment

Several members expressed concern that—with less than US$30 million invested in advanced reactors—whether DOE is really pushing for commercialization of SMRs. In response, Mr. McGinnis noted that a lot of work was being performed at the national labs and DOE continues to work on deployment matters.

  • High-assay LEU and Test Reactors

Mr. McGinnis from DOE also explained that DOE was working towards development of a fast neutron reactor and growing a capacity for high-assay LEU. Mr. McGinnis acknowledged that next-generation nuclear innovators need a test reactor, which itself would require high-assay LEU. He added that NNSA is taking seriously the challenge of developing a high-assay LEU capacity for testing and eventual industry use.

  • Deployment of US SMRs overseas

A number of members asked about deployment of US SMRs abroad. In response, Mr. McGinnis remarked that a number of countries are interested in U.S. SMR designs and watching their progress. He remarked that the U.S. is the world expert in designing SMRs, and that if the U.S. was able to prove the technology domestically it would open up the international market. The hearing participants also discussed ways to speed up the U.S. nuclear export approval process. On that last point, Congressman Bill Johnson (R-OH) noted that he intended to introduce legislation soon to improve the export control authorization process. At the end of 2017, Chairman Upton and Congressman Johnson sent a letter to Energy Secretary Rick Perry saying that the slow pace of DOE authorizations for commercial nuclear energy exports is having harmful consequences for U.S. competitiveness and national security. “While DOE is in the process of implementing some targeted reforms, more work remains to accelerate agency decision-making so that our domestic nuclear technology leaders have timely answers necessary to compete effectively with other nations’ nuclear programs,” the letter said.

  • NRC fee reform

When asked about if the NRC is undergoing reviews of its fee structure and looking for ways to improve methodology especially when non-LWR reactors look for licensing, Mr. McCree confirmed that the NRC is looking at this issue.

With a flurry of attention on advanced reactors lately, the hearing brings welcome attention the advanced reactor community needs. Please contact the authors with any questions.

Highlighting how government support can positively benefit a transformative, nascent industry, Canada has again taken a lead role in support small modular reactor (SMR) development.  The country has already garnered significant attention through its pre-licensing vendor design review process, in which seven advanced reactor ventures are participating and many more have expressed interest.  But in October, the Canadian Nuclear Laboratories (CNL) also released a report entitled “Perspectives on Canada’s SMR Opportunity,” which discusses the labs’ SMR strategy and responses to a request for information.

The report proves an interesting read and a useful resource for other countries or institutions looking to promote SMRs and advanced reactors.  It analyses the 80 submissions provided from across the industry.  Among other things, the report discusses the various benefits of SMRs, the types of reactors being developed, benefits to Canada, and comments related to how to efficiently regulate SMR innovation.  It also builds on CNL’s efforts to promote SMRs and advanced reactors—in 2017 CNL released a long-term strategy for its Chalk River Site, including a $1.2 billion push to promote the development of next-generation reactors.

For more about Canada’s work with SMRs and advanced reactors, please contact the authors.

Wednesday, the NRC staff held a public meeting related to emergency planning for SMRs and other new reactor technologies. Slides from the meeting can be found here.

A few observations from the meeting—

  • Although early in the process, if executed correctly, the NRC’s Emergency Planning rulemaking could significantly reduce costs for new small modular reactors, advanced reactors, and even medical isotope reactors.
  • There was significant discussion during the meeting on a number of areas, but in particular—
    • Whether the rule would be “risk-informed.”
    • How site-specific features would be factored into the rulemaking.
    • How proposed industrial facilities near a nuclear power plant would affect emergency planning.

The NRC staff made clear during the meeting that the rulemaking would be risk-informed and consequence-oriented, and would work to incorporate the safety advances provided by new reactor designs.

  • The NRC staff emphasized that it welcomes written comments as it moves forward with this rulemaking, and will lean on them in developing a proposed rule.  Comments on the regulatory basis document are due by June 27, 2017.

For additional discussion on the meeting, please contact the authors.