On Wednesday, November 15, the US Nuclear Regulatory Commission (NRC) staff published a revised and final regulatory basis document in support of its rulemaking to reform emergency planning requirements for small modular and advanced reactors, including medical isotope reactors.  This rulemaking promises to significantly reduce costs for next generation nuclear plants by employing individualized, risk-informed requirements as opposed to rigid deterministic ones.

Fifty-seven individuals, companies, and organizations commented on the draft regulatory basis document.  The NRC staff made a number of edits to respond to the comments, including further incorporating risk-informed concepts into the text of the regulatory basis, and increasing discussion of the agency’s framework for establishing the size of emergency planning zones for new reactor designs.  According to the NRC’s rulemaking schedule, a proposed rule is due to be published early 2019, with a final rule in 2020.

This action by the NRC coincides with exciting developments for the US Department of Energy.  This week the Transient Reactor Test Facility (TREAT) at Idaho National Laboratories successfully completed low-power operations after being brought out of standby since 1994.  As explained in industry press, the restart of TREAT is a big success story for the agency, which refurbished the facility a year ahead of schedule and $20 million under budget.  TREAT specializes in testing new reactor fuels under heavy irradiation conditions, to see how they perform particularly in accident scenarios.  Testing new fuel designs is a linchpin to commercializing new reactor designs, as many of them rely on completely new concepts for nuclear fuel.

TREAT may also be getting company.  This same week, the House of Representatives Committee on Science, Space, and Technology approved an exciting new bill markup, HR 4378, the “Nuclear Energy Research Infrastructure Act of 2017.”  This piece of legislation tries to deliver on repeated calls to build a new test reactor in the United States.  It calls for a fast-neutron test facility to be completed in the mid-2020s that supports (among other things) high-temperature testing, testing of different coolant types, medical isotope production, and which is designed to be upgrade-able over time.  Funding is set aside, with $35 million in 2018, scaling up to $350 million from 2023 to 2025.

For more on any of these topics, feel free to contact the authors.

Hogan Lovells had the honor Monday of hosting the Washington, D.C. launch party for Ambassador Thomas Graham’s new book “Seeing the Light: The Case for Nuclear Power in the 21st Century.”  As part of the launch party, Hogan Lovells partner Amy Roma sat down with Tom and three other distinguished guests for a panel on the future of nuclear power.  The other panelists included: Senator John Warner (former Secretary of the Navy; five term Virginia Senator), Mike Wallace (current Board member for Emirates Nuclear Energy Corporation; former Constellation Energy COO and Vice-Chairman), and Jim McDonnell (Director of DHS’ Domestic Nuclear Detection Office).

The book has drawn strong critical acclaim. Richard Rhodes, the Pulitzer Prize recipient for The Making of the Atomic Bomb, calls this publication “the best book” written on the subject of commercial nuclear power. The book makes clear that “[n]uclear power is not an option for the future but an absolute necessity.” It also explains that:

Fortunately, a new era of growth in this energy source is underway in developing nations, though not yet in the West. Seeing the Light is the first book to clarify these realities and discuss their implications for coming decades. Readers will learn how, why, and where the new nuclear era is happening, what new technologies are involved, and what this means for preventing the proliferation of weapons. This book is the best work available for becoming fully informed about this key subject, for students, the general public, and anyone interested in the future of energy production, and, thus, the future of humanity on planet Earth.

The panel provided an exciting opportunity to marry the research and conclusions from Seeing the Light with the experiences and insights of those working to make the future of nuclear power—including next generation nuclear power—a reality. Some of the many insights from the panel included the following:

  • National Security Should Be Considered, as well as Climate Change: Seeing the Light clearly explains that the urgent threat of climate change requires nuclear power to work alongside renewables. In addition, the panel discussed at length that national security is also an important concern, and one that national leaders may also readily get behind. From an inability to power the nuclear navy to losing our seat on the table with regards to non-proliferation, the panelists repeatedly brought home the importance of having a robust commercial nuclear industrial base to keep the country at the cutting edge. The panelists expressed grave concern that a downward spiral in nuclear investment and talent threatens the U.S. on multiple fronts.
  • Effective Non-Proliferation Requires Peaceful Nuclear Power: While the book argues that the global nuclear non-proliferation treaties of the 20th century were not just giveaways from non-weapons states to the nuclear weapons states. Instead, they were agreements that in exchange for not engaging in nuclear weapons, non-weapons states would have assistance to develop a robust commercial, peaceful nuclear industry. And the U.S. has an obligation to these parties to assist them with their programs.  Moreover, the lack of a U.S. presence in foreign nuclear programs, weakens the U.S. voice on non-proliferation issues.
  • Ensuring New Nuclear Meets Top Safety and Security Standards. The panelists also all agreed that the use of U.S. technology abroad means that U.S. standards for safety and security, which are the highest in the World, will be incorporated into foreign reactor programs.
  • Top-Level Government Support Needs To Complement Private Action: All the panelists also agreed that the development of nuclear power in the 20th century was a true public-private partnership, with both Congress and the Executive Branch offering support. And this partnership delivered dividends countless times over back to the government and taxpayers. With a new wave of reactors moving forward around the world and the next generation of nuclear power on the horizon, the panelists agree that this needs to happen again, and that circumstances are right to make real progress towards this in the near future.

For more on the book, the panel, or on the potential role nuclear power can play in our future, please contact the authors.

Highlighting how government support can positively benefit a transformative, nascent industry, Canada has again taken a lead role in support small modular reactor (SMR) development.  The country has already garnered significant attention through its pre-licensing vendor design review process, in which seven advanced reactor ventures are participating and many more have expressed interest.  But in October, the Canadian Nuclear Laboratories (CNL) also released a report entitled “Perspectives on Canada’s SMR Opportunity,” which discusses the labs’ SMR strategy and responses to a request for information.

The report proves an interesting read and a useful resource for other countries or institutions looking to promote SMRs and advanced reactors.  It analyses the 80 submissions provided from across the industry.  Among other things, the report discusses the various benefits of SMRs, the types of reactors being developed, benefits to Canada, and comments related to how to efficiently regulate SMR innovation.  It also builds on CNL’s efforts to promote SMRs and advanced reactors—in 2017 CNL released a long-term strategy for its Chalk River Site, including a $1.2 billion push to promote the development of next-generation reactors.

For more about Canada’s work with SMRs and advanced reactors, please contact the authors.

On Friday, U.S. Department of Energy (DOE) Secretary of Energy Rick Perry proposed a dramatic change to U.S. Federal Energy Regulatory Commission (FERC)-regulated energy markets.  His rule would compensate “reliability and resiliency” resources potentially both on a market rate and/or a cost-of-service rate.  He has put forward a tight timeline for the rule, directing FERC to make a final action on the proposed rule within 60 days after publication in the Federal Register, or alternatively, to adopt the current rule as an interim measure to be modified in the future.  A complete analysis of the rule by Hogan Lovells can be found here.

Although geared towards existing nuclear and coal power plants, in the long term advanced reactors could be well-positioned to benefit from the new rule.  It is unclear if this rule will stem the tide of coal plant retirements, and without coal, nuclear power for the most part will be the only remaining generation source capable of meeting the requirements to benefit under the rule (e.g., eligible generation sources must have 90 days-worth of fuel on site).

Comments will be collected on the rule for 45 days after publication in the Federal Register.  We encourage all next-generation nuclear providers to get involved and comment on the new rule.  Instead of a short-term measure to support existing resources, this rule should be seen as a fundamental recognition of one of the many uncompensated for benefits of nuclear power.  If properly structured, this rule has the potential to support the nascent next-generation nuclear industry as it develops.  For any questions on the proposed rule or how to comment on it, please contact the authors.

Last week China announced the launch of a company to build twenty (20) floating nuclear power stations.  Russia continues to move forward with its floating nuclear power station, which are to be mass-produced at shipbuilding facilities and then towed to areas in need of power.  In fact, it is working towards initial fuel load on its first floating reactor.  Politics aside, these developments highlight a trend in nuclear power, which is the growing interest to power our cities with smaller, more flexible  reactors—which could be located offshore.

China and Russia are not the first to suggest the concept of sea-based reactors.  The world’s first operational nuclear reactors were naval reactors for submarines, and nuclear reactors continue to power submarines and aircraft carriers around the world.  In the commercial power space, a floating nuclear reactor effort called the Offshore Power System project was explored in the 1970s to provide power onshore, although it eventually did not move forward.  Since then, Russia has taken a lead role, constructing the Akademik Lomonosov, a floating reactor that will be towed to Pevek in Russia’s Eastern half for power generation.  Private enterprise has also taken interest in the concept.  For example, a company called ThorCon is proposing a molten salt reactor power that would be located on a ship and deploy-able around the world, called the ThorConIsle.  However, China’s effort may ultimately prove to be one of the more extensive ones.  The company will be formed by five entities including the China National Nuclear Power Corporation, and will have an initial capital of $150 million.

The legal, policy, and regulatory issues posed by floating reactors are as interesting as the technology.  The location of the floating reactors next to other countries is of course a key concern. The Akademik Lomonosov had to change where it would be fueled due to concerns by Norway.  Some are alleging that the Chinese reactor project is part of an effort to help boost control of the South China Sea.  The transit of floating nuclear reactors–which do not propel the vessels they are on–by neighboring countries raises legal issues that would need to be navigated.  In addition, just as the siting of wind turbines offshore has at times generated strong local opposition, similar grass-roots opposition could arise to challenge the siting of floating reactors located offshore.  These challenges can be overcome, but should be considered early on in project development.

The regulatory framework in which a private company would construct a reactor would also need to be examined.  For example, in the United States, the U.S. Nuclear Regulatory Commission’s (NRC’s) Standard Review Plan for examining the safety of nuclear reactors does not necessarily envision floating reactors.  That does not mean a floating reactor could not get licensed in the United States, however, and in fact the Offshore Power System, and the licensing of the NS Savannah provide some useful precedent.  The NS Savannah was licensed by the U.S. Atomic Energy Commission, the predecessor agency of the NRC, and although this was built to be a “goodwill ship,” a goal in the construction of the ship was to meet civilian safety requirements so the vessel could be usable by the public.  Moreover, the NRC works with the Department of Energy (DOE) to provide technical support for DOE’s oversight of the U.S. Nuclear Navy.

Extending civilian use of nuclear power to the ocean presents questions, but also significant opportunities, for both the developed and developing world.  Please do not hesitate to contact the authors if you wish to learn more.

 Late last week the U.S. Nuclear Regulatory Commission (NRC) staff released its non-light water reactor (i.e., advanced reactor) “Near-Term Implementation Action Plans,” and “Mid-Term and Long-Term Implementation Action Plans.”  These two plans follow up from the agency’s Vision & Strategy Statement for advanced reactors, and attempt to more concretely lay out the NRC staff’s next steps for developing a regulatory framework for advanced reactor licensing.  A few quick insights from the two documents:

  • Both plans are based on the same five to six strategies.  The first five are, in short: (i) develop knowledge and skills, (ii) develop computer codes and tools, (iii) develop a flexible regulatory review process, (iv) facilitate industry codes and standards, and (v) resolve policy questions (one difference here though is that the near-term plans focus on technology-inclusive issues, while the longer-term plans focus on technology-specific issues).  The near-term plan also specifically lists as a sixth strategy that the NRC would “develop a communications strategy.” But a communications strategy will certainly continue to exist and evolve as the NRC moves into the mid and long term.
  • Among the six near-term strategies, the NRC staff plans to prioritize strategies (iii) and (v), developing the regulatory review process and resolving common policy issues.  This is due to “stakeholder feedback on the draft near-term [plans] and recommendations of the Advisory Committee on Reactor Safeguards” (ACRS).  The ACRS letter making this recommendation can be found here.  This prioritization will help the agency be better prepared in case applications come in for approval to the NRC earlier than the agency expects.  The NRC’s overall plan is to be ready to address advanced reactor applications in 2025, but multiple parties have indicated they will be submitting applications earlier.
  • In the near term, strategy (iii), concerning the regulatory review process, is guidance-based and is designed to work “within the bounds of existing regulations.”  In the mid-to-long term, the NRC staff bifurcates the strategy: continuing a guidance-focused approach, while considering a rulemaking to develop an advanced reactor regulatory framework that is “is risk-informed, performance-based, technology-inclusive, and that features staff review efforts commensurate with the risks posed by the non-LWR [nuclear power plant] design being considered.”

    However, the rulemaking approach is only suggested as an option “if needed.”  In discussing its long-term strategy, the agency staff stated it “will evaluate the need for or potential benefits of such a rulemaking throughout near- and mid-term activities,” based on  whether or not it will improve licensing and regulatory effectiveness.  The upshot, though, is that a rulemaking is still very much on the table, and this furthers a long-running debate as to the extent regulatory reform is needed for advanced reactors to prosper in the United States.

  • The NRC staff appears to reinvigorate discussion of conceptual design assessments and staged review processes, which as we have discussed in a prior post the agency seemed to downplay in its final Vision & Strategy Statement.  Draft guidance for these two processes can be found in the October 2016 draft document, “A Regulatory Review Roadmap for Non-Light Water Reactors.”

These Implementation Action Plans, along with the feedback the agency staff received from stakeholders and the ACRS, will be helpful generally.  However, the increasingly likely option that reactor designers will be submitting designs to the NRC earlier than expected will present a true test of the NRC’s readiness.  According to the agency staff, “[i]n those cases, the NRC will work developers on design-specific licensing project plans . . . and the NRC may prioritize or accelerate specific contributing activities in [its action plans], as needed.”

If there are any questions on the licensing regime for advanced reactors, please reach out to the authors.

Fusion is the combining of two or more smaller atoms to create one larger atom, potentially releasing large amounts of energy in the process.  A typical example is the merging of hydrogen atoms to form helium – the core process that powers our sun.  Fusion energy is moving beyond theory and becoming of increasing interest as a means of power production.  Third Way lists seventeen organizations, both government and private, working on fusion energy projects.  Each is working on a different means of dealing with the core challenges for fusion energy, including keeping the reaction stable long enough to get significant energy out, managing the high-energy neutrons that may result, and constructing materials that can work in the harsh fusion environment.

There is significant capital entering the field, led by some big names.  For example, Microsoft co-founder Paul Allen is invested in Tri Alpha Energy, and Amazon CEO Jeff Bezos is funding General Fusion, two leading fusion startups.  The U.S. Department of Energy’s Advanced Research Projects Agency – Energy (commonly known as ARPA-E) supported a funding program for fusion energy that helped spur a number of innovative ideas.  Growth in the field continues to accelerate.  The United Kingdom venture Tokamak Energy recently turned on its ST40 fusion reactor, which hopes to create temperatures seven times hotter than the center of the sun in the pursuit of fusion energy.

As a first of a kind technology, nuclear fusion presents new regulatory questions, including if it should be regulated, how, and who should regulate it.  The U.S. Nuclear Regulatory Commission (NRC) stepped its toe into the waters in 2009.  The agency’s staff issued a paper noting that recent activities had drawn attention to the area, and raised “the possible need to regulate fusion energy and specifically the role of the NRC.”  By that point, concerns had already arisen in regards to exports – specifically as to whether the NRC should regulate exports of fusion-related components instead of the Department of Commerce.  The paper then discussed various options for how the Commission could proceed.

Later that year the Commission issued its voting record and response to the staff.  In it, the Commission asserted jurisdiction “as a general matter” over fusion energy devices whenever they would be of significance to the common defense and security or could impact public health and safety.  In supporting this position, Commissioner Svinicki (now Chairman of the agency) noted that the legislative history behind the 1954 amendments to the Atomic Energy Act indicated that “atomic energy” as used in the statute includes energy from fusion.  But apart from this declaration, the Commission left future regulatory efforts to when the technology demonstrates further progress, particularly by successful testing of a specific fusion technology.

It is possible this time may come sooner than most think.  Milestones in fusion research are being routinely surpassed, bit by bit, and increasing amounts of investment are entering the field.  Our team operates at the forefront of the next-generation nuclear energy frontier, and has spent some time on issues such as the NRC’s jurisdiction over new atomic energy technologies.  If you have a question in this area, do not hesitate to contact the authors.

Wednesday, the NRC staff held a public meeting related to emergency planning for SMRs and other new reactor technologies. Slides from the meeting can be found here.

A few observations from the meeting—

  • Although early in the process, if executed correctly, the NRC’s Emergency Planning rulemaking could significantly reduce costs for new small modular reactors, advanced reactors, and even medical isotope reactors.
  • There was significant discussion during the meeting on a number of areas, but in particular—
    • Whether the rule would be “risk-informed.”
    • How site-specific features would be factored into the rulemaking.
    • How proposed industrial facilities near a nuclear power plant would affect emergency planning.

The NRC staff made clear during the meeting that the rulemaking would be risk-informed and consequence-oriented, and would work to incorporate the safety advances provided by new reactor designs.

  • The NRC staff emphasized that it welcomes written comments as it moves forward with this rulemaking, and will lean on them in developing a proposed rule.  Comments on the regulatory basis document are due by June 27, 2017.

For additional discussion on the meeting, please contact the authors.

On Wednesday, May 10 from 9:00 AM to 11:30 AM, the U.S. Nuclear Regulatory Commission (NRC) will hold a public meeting to discuss the draft regulatory basis for its rulemaking on emergency preparedness (EP) for small modular reactors (SMRs) and advanced reactors.  The regulatory basis document outlines the agency’s overall approach to the rulemaking, and the background and developments leading up to it.  Participants can attend in person at the NRC or by phone.

In its regulatory basis publication, the NRC posits that its new regulations on EP will be consequence-oriented and performance-based, allowing for recognition of the inherent safety benefits of SMRs and advanced reactors.  It leaves open the possibility that for some plant designs, “the potential exists for [the Emergency Planning Zone or ‘EPZ’] to be contained within the site boundary.”

Comments on the regulatory basis document are due by June 27, 2017, and this public meeting can help those members of the advanced reactor community interested in filing comments.  Getting this rulemaking right can have a significant impact on the cost of and public perception of next-generation nuclear technologies.

For more on the EP rulemaking, please contact the authors.

Published reports indicate that as many as 18 reactor designers are looking at the possibility of siting their first facility at Idaho National Laboratory, DOE’s lead laboratory for nuclear reactors. From time to time, there are similar expressions of interest in DOE’s Oak Ridge National Laboratory and Savannah River Site.

DOE facilities have much to recommend them for such an undertaking, including incredible nuclear expertise near-at-hand, locations that are both remote and friendly to nuclear undertakings, and plenty of open space. At the same time, it is important to recognize the unique challenges that come with such sites.

Entering into a site use permit with DOE requires an understanding of certain “immovables,” including: DOE mission requirements, present and future; DOE obligations to state regulators, particularly environmental regulators; past uses of the sites that may not yet be remediated, such as environmental contamination or unexploded ordnance; and appropriations law restrictions, which mean that DOE cannot spend money to address an issue until Congress appropriates the money for that purpose.

There are also discontinuities between nuclear safety, security and liability approaches applicable to DOE and the Nuclear Regulatory Commission that have to be accommodated. These could affect matters as diverse as site access, transfer of ownership and radiation exposure standards. Likewise, dealing with two federal agencies that have different roles will complicate compliance with certain laws that apply equally to both of them, such as the National Environmental Policy Act and the National Historic Preservation Act.

Finally, there are also unique financial considerations arising both out of sharing common services and buying services from DOE.

None of these issues are insoluble, but it will take time and flexibility in approach to reach agreement. A reactor designer looking at a DOE site should go into it with eyes open and a large measure of patience for the negotiation that will be required.

Hogan Lovells has experience with negotiating these types of unique agreements with DOE. For additional information please contact one of the authors below.

Mary Anne Sullivan
Dan Stenger
Amy Roma
Sachin Desai