On Sunday, the popular TV show Madam Secretary gave a starring role to the climate and security benefits of nuclear power. The episode, titled “Thin Ice,” which is still available on the CBS website, proffered a full-throated defense of the climate benefits of nuclear power, turned a grassroots activist organization into a supporter of nuclear energy, and showcased how a nuclear powered ice breaker protected the Arctic from a foreign incursion. It capped with Secretary McCord convincing the show’s President to revise the national nuclear policy. As Michael Shellenberger opined following the episode (he also walks through the episode in detail), this marks a turning point for Hollywood, and “represents a popular culture breakthrough for the pro-nuclear movement.”  We encourage everyone to watch the episode!

From there, the week has only gotten better for nuclear innovation. The U.S. Nuclear Regulatory Commission (NRC) completed “the first and most intensive phase of review for” NuScale’s Design Certification Application for its small modular reactor. The NuScale design review has six phases to its schedule; but the first review sets the tenor, as it establishes the NRC staff’s preliminary safety evaluation of the reactor and encompasses a large portion of the requests for additional information. NuScale performed admirably in both areas. Along with this significant milestone—which derisks the company’s regulatory path forward—NuScale also received US$40 million from U.S. Department of Energy to continue advancing its innovative new, passively safe reactor design. And even the issue of nuclear waste storage might see progress, as the Nuclear Waste Policy Amendments Act of 2018 will get a vote on the floor of the House soon. The bill will move forward interim storage of spent nuclear fuel, and seek resolution on the licensing of a final national repository.

And apart from advancements on earth, NASA successfully tested KRUSTY, or “Kilopower Reactor Using Stirling Technology,” a nuclear reactor for potential moon and Mars bases. NASA personnel stated after the successful Nevada trial that “[n]o matter what environment we expose it to, the reactor performs very well.” NASA, along with Hollywood and Congress it seems, has taken a renewed interest in the role nuclear power can play in space exploration.

If you wish to learn more about any of these encouraging events, please contact the authors.

Fusion is the combining of two or more smaller atoms to create one larger atom, potentially releasing large amounts of energy in the process.  A typical example is the merging of hydrogen atoms to form helium – the core process that powers our sun.  Fusion energy is moving beyond theory and becoming of increasing interest as a means of power production.  Third Way lists seventeen organizations, both government and private, working on fusion energy projects.  Each is working on a different means of dealing with the core challenges for fusion energy, including keeping the reaction stable long enough to get significant energy out, managing the high-energy neutrons that may result, and constructing materials that can work in the harsh fusion environment.

There is significant capital entering the field, led by some big names.  For example, Microsoft co-founder Paul Allen is invested in Tri Alpha Energy, and Amazon CEO Jeff Bezos is funding General Fusion, two leading fusion startups.  The U.S. Department of Energy’s Advanced Research Projects Agency – Energy (commonly known as ARPA-E) supported a funding program for fusion energy that helped spur a number of innovative ideas.  Growth in the field continues to accelerate.  The United Kingdom venture Tokamak Energy recently turned on its ST40 fusion reactor, which hopes to create temperatures seven times hotter than the center of the sun in the pursuit of fusion energy.

As a first of a kind technology, nuclear fusion presents new regulatory questions, including if it should be regulated, how, and who should regulate it.  The U.S. Nuclear Regulatory Commission (NRC) stepped its toe into the waters in 2009.  The agency’s staff issued a paper noting that recent activities had drawn attention to the area, and raised “the possible need to regulate fusion energy and specifically the role of the NRC.”  By that point, concerns had already arisen in regards to exports – specifically as to whether the NRC should regulate exports of fusion-related components instead of the Department of Commerce.  The paper then discussed various options for how the Commission could proceed.

Later that year the Commission issued its voting record and response to the staff.  In it, the Commission asserted jurisdiction “as a general matter” over fusion energy devices whenever they would be of significance to the common defense and security or could impact public health and safety.  In supporting this position, Commissioner Svinicki (now Chairman of the agency) noted that the legislative history behind the 1954 amendments to the Atomic Energy Act indicated that “atomic energy” as used in the statute includes energy from fusion.  But apart from this declaration, the Commission left future regulatory efforts to when the technology demonstrates further progress, particularly by successful testing of a specific fusion technology.

It is possible this time may come sooner than most think.  Milestones in fusion research are being routinely surpassed, bit by bit, and increasing amounts of investment are entering the field.  Our team operates at the forefront of the next-generation nuclear energy frontier, and has spent some time on issues such as the NRC’s jurisdiction over new atomic energy technologies.  If you have a question in this area, do not hesitate to contact the authors.