NASA iTech and the U.S. Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) are collaborating on a unique competition to identify transformational energy technologies that can address critical problems here on Earth that also hold great potential to solve critical technology challenges in future space exploration.  On that list: fission reactors.

NASA and ARPA-E are seeking to identify the nation’s top entrepreneurs and researchers to present their innovative technologies to address energy-specific challenges. A few examples of technology sub-themes that NASA believes have the potential to improve future space power systems include, but are not limited to:

  • Small Fission Power Systems
  • Fuel Cells and Regenerative Fuel Cells
  • High-energy Density Batteries and Supercapacitors
  • Solar Power Systems
  • Innovative Power Management and Distribution (including smart grids and wireless power transfer)
  • X-Factor Energy: innovations so compelling NASA and ARPA-E should know about them

Through April 29, 2018, inventors and entrepreneurs can submit a five-page white paper on their concept on the NASA iTech website.  A panel of subject matter experts from NASA and ARPA-E will review ideas submitted and select the top 10 finalists based on their relevance and potential impact to present at the upcoming 2018 iTech Energy Cycle.

The initial top 25 semi-finalists for this energy-focused cycle will be announced on May 10, 2018. The top 10 finalists will be announced on May 25, 2018. Those finalists will be invited to present their technologies and engage with NASA and ARPA-E subject matter experts, potential investors, and industry partners at the NASA iTech 2018 Energy Forum in New York City, June 11-14, 2018.

The ARPA-E at the U.S. Department of Energy provides R&D funding for transformational ideas to create America’s future energy technologies. ARPA-E focuses exclusively on early-stage technologies that could fundamentally change the way we generate, use, and store energy.

NASA iTech is an initiative sponsored by NASA’s Space Technology Mission Directorate and managed by the National Institute of Aerospace in Hampton, Virginia.  “NASA iTech has proven to be a successful public-private partnership model for stimulating the development of ground-breaking technologies, without the government being the early investor,” said Kira Blackwell, NASA iTech program executive in the Space Technology Mission Directorate at NASA Headquarters in Washington. “Previous entrants to NASA iTech have already raised more than $50 million in private investment funds.”  The NASA announcement is here.  For more information about the NASA iTech initiative, visit here.  For information about the Space Technology Mission Directorate, visit here.

Please contact one of the authors with any questions.

The House Committee on Energy and Commerce, Subcommittee on Energy held a hearing February 6, 2018 to discuss the challenges facing America’s nuclear infrastructure, including advanced reactor development.  The hearing was called “DOE Modernization: Advancing the Economic and National Security Benefits of America’s Nuclear Infrastructure.” A video of the hearing can be watched here.

A background memorandum released in advance explained that the hearing would explore the following important topics:

  • National security implications associated with U.S. nuclear leadership and a domestic nuclear energy industry;
  • The outlook for domestic and international development of nuclear energy and application of nuclear technologies;
  • Challenges and opportunities regarding maintaining the components of a domestic nuclear fuel cycle; and
  • Options to develop and deploy advanced nuclear technologies

The hearing witnesses included (their statements are also provided below):

  • Mr. Art Atkins, Associate Deputy Administrator for Global Material Security, U.S. Department of Energy, National Nuclear Security Administration: Witness Statement
  • Mr. Victor McCree, Executive Director of Operations, U.S. Nuclear Regulatory Commission: Witness Statement
  • Mr. Ed McGinnis, Principal Deputy Assistant Secretary, U.S. Department of Energy, Office of Nuclear Energy: Witness Statement
  • Mr. James Owendoff, Principal Deputy Assistant Secretary, U.S. Department of Energy, Office of Environmental Management: Witness Statement
  • Dr. Ashley Finan, Policy Director, Nuclear Innovation Alliance: Witness Statement
  • Ms. Maria Korsnick, President and CEO, Nuclear Energy Institute: Witness Statement
  • The Honorable Bill Ostendorff, Former NRC Commissioner and Distinguished Visiting Professor of National Security, U.S. Naval Academy: Witness Statement
  • Dr. Mark Peters, Director, Idaho National Laboratory: Witness Statement
  • Mr. David Trimble, Director, Government Accountability Office, Natural Resources and Environment: Witness Statement

Summary of Key Issues for Advanced Reactor Community

During his opening remarks, Full Committee Chairman Greg Walden (R-OR) noted that “[a]t root today, is a question of our nation’s capabilities not only to propel nuclear innovation generally, but to ensure an infrastructure that is critical to our economic and our national security.” He promised to align U.S. policy with a changing world: “we must recognize the world looks different than it did at the birth of the nuclear age. Consequently, we must take steps to update the relevant policies. These policies must be forward looking to enable innovation and the development and deployment of new advanced nuclear technologies.”

Once witness questioning began, the Subcommittee quickly honed in on issues facing the advanced reactor community and expressed bipartisan support for U.S. government help to develop and deploy these innovative new designs. Among the issues discussed were the following:

  • SMR commercialization and deployment schedule

The first question asked at the hearing, by Subcommittee Chairman Fred Upton (R-MI), was on small modular reactor (SMR) commercialization and when the U.S. was going to see SMR designs being approved and deployed in the commercial sector. In response, Ed McGinnis, Principal Deputy Assistant Secretary, U.S. Department of Energy, Office of Nuclear Energy explained: “We are at a tipping point,” with the U.S. leading in design development but challenged in deployment of the technologies. He went on to note that NuScale project that can be “game changing” if successfully deployed.

Last year, reactor designer NuScale submitted to the U.S. Nuclear Regulatory Commission the first SMR reactor design certification application  in the United States. The NRC recently approved–in a first of a kind decision–that NuScale would not need a safety-related electrical power system. This means that the NRC believes the reactor can remain in a safe condition in the event it loses electricity. Currently, all nuclear power plants in the U.S. have safety-related electrical power systems. And the fact that NuScale does not need one is a testament to the inherent different nature of SMRs—and the first time the NRC has recognized as such during its review of an application.

On that front, Victor McCree, the NRC’s Executive Director of Operations, explained during the hearing that the NRC’s decision about NuScale reflects a “philosophical” change that will lead to more efficient and effective reviews. Mr. McCree continued on to explain that an NRC approval of the NuScale design would open the market in a way that large reactors cannot, including by being more affordable and improving grid reliability. Mr. McGinnis further explained that with a number of large-scale reactors facing shutdown, getting SMRs into the pipeline is an imperative, and among other things, DOE was working on integrating SMRs with wind turbines and solar plants. With SMRs versatility and fast ramp up ability, Mr. McGinnis explained, SMRs could be paired with renewables to firm up their intermittent power and delivery of emissions free power.

  • Concern with amount of DOE funding to support SMR commercialization and deployment

Several members expressed concern that—with less than US$30 million invested in advanced reactors—whether DOE is really pushing for commercialization of SMRs. In response, Mr. McGinnis noted that a lot of work was being performed at the national labs and DOE continues to work on deployment matters.

  • High-assay LEU and Test Reactors

Mr. McGinnis from DOE also explained that DOE was working towards development of a fast neutron reactor and growing a capacity for high-assay LEU. Mr. McGinnis acknowledged that next-generation nuclear innovators need a test reactor, which itself would require high-assay LEU. He added that NNSA is taking seriously the challenge of developing a high-assay LEU capacity for testing and eventual industry use.

  • Deployment of US SMRs overseas

A number of members asked about deployment of US SMRs abroad. In response, Mr. McGinnis remarked that a number of countries are interested in U.S. SMR designs and watching their progress. He remarked that the U.S. is the world expert in designing SMRs, and that if the U.S. was able to prove the technology domestically it would open up the international market. The hearing participants also discussed ways to speed up the U.S. nuclear export approval process. On that last point, Congressman Bill Johnson (R-OH) noted that he intended to introduce legislation soon to improve the export control authorization process. At the end of 2017, Chairman Upton and Congressman Johnson sent a letter to Energy Secretary Rick Perry saying that the slow pace of DOE authorizations for commercial nuclear energy exports is having harmful consequences for U.S. competitiveness and national security. “While DOE is in the process of implementing some targeted reforms, more work remains to accelerate agency decision-making so that our domestic nuclear technology leaders have timely answers necessary to compete effectively with other nations’ nuclear programs,” the letter said.

  • NRC fee reform

When asked about if the NRC is undergoing reviews of its fee structure and looking for ways to improve methodology especially when non-LWR reactors look for licensing, Mr. McCree confirmed that the NRC is looking at this issue.

With a flurry of attention on advanced reactors lately, the hearing brings welcome attention the advanced reactor community needs. Please contact the authors with any questions.

Hogan Lovells had the honor Monday of hosting the Washington, D.C. launch party for Ambassador Thomas Graham’s new book “Seeing the Light: The Case for Nuclear Power in the 21st Century.”  As part of the launch party, Hogan Lovells partner Amy Roma sat down with Tom and three other distinguished guests for a panel on the future of nuclear power.  The other panelists included: Senator John Warner (former Secretary of the Navy; five term Virginia Senator), Mike Wallace (current Board member for Emirates Nuclear Energy Corporation; former Constellation Energy COO and Vice-Chairman), and Jim McDonnell (Director of DHS’ Domestic Nuclear Detection Office).

The book has drawn strong critical acclaim. Richard Rhodes, the Pulitzer Prize recipient for The Making of the Atomic Bomb, calls this publication “the best book” written on the subject of commercial nuclear power. The book makes clear that “[n]uclear power is not an option for the future but an absolute necessity.” It also explains that:

Fortunately, a new era of growth in this energy source is underway in developing nations, though not yet in the West. Seeing the Light is the first book to clarify these realities and discuss their implications for coming decades. Readers will learn how, why, and where the new nuclear era is happening, what new technologies are involved, and what this means for preventing the proliferation of weapons. This book is the best work available for becoming fully informed about this key subject, for students, the general public, and anyone interested in the future of energy production, and, thus, the future of humanity on planet Earth.

The panel provided an exciting opportunity to marry the research and conclusions from Seeing the Light with the experiences and insights of those working to make the future of nuclear power—including next generation nuclear power—a reality. Some of the many insights from the panel included the following:

  • National Security Should Be Considered, as well as Climate Change: Seeing the Light clearly explains that the urgent threat of climate change requires nuclear power to work alongside renewables. In addition, the panel discussed at length that national security is also an important concern, and one that national leaders may also readily get behind. From an inability to power the nuclear navy to losing our seat on the table with regards to non-proliferation, the panelists repeatedly brought home the importance of having a robust commercial nuclear industrial base to keep the country at the cutting edge. The panelists expressed grave concern that a downward spiral in nuclear investment and talent threatens the U.S. on multiple fronts.
  • Effective Non-Proliferation Requires Peaceful Nuclear Power: While the book argues that the global nuclear non-proliferation treaties of the 20th century were not just giveaways from non-weapons states to the nuclear weapons states. Instead, they were agreements that in exchange for not engaging in nuclear weapons, non-weapons states would have assistance to develop a robust commercial, peaceful nuclear industry. And the U.S. has an obligation to these parties to assist them with their programs.  Moreover, the lack of a U.S. presence in foreign nuclear programs, weakens the U.S. voice on non-proliferation issues.
  • Ensuring New Nuclear Meets Top Safety and Security Standards. The panelists also all agreed that the use of U.S. technology abroad means that U.S. standards for safety and security, which are the highest in the World, will be incorporated into foreign reactor programs.
  • Top-Level Government Support Needs To Complement Private Action: All the panelists also agreed that the development of nuclear power in the 20th century was a true public-private partnership, with both Congress and the Executive Branch offering support. And this partnership delivered dividends countless times over back to the government and taxpayers. With a new wave of reactors moving forward around the world and the next generation of nuclear power on the horizon, the panelists agree that this needs to happen again, and that circumstances are right to make real progress towards this in the near future.

For more on the book, the panel, or on the potential role nuclear power can play in our future, please contact the authors.

The U.S. Department of Energy’s (DOE’s) Gateway for Accelerated Innovation in Nuclear (GAIN) announced last week its second round of awards.  A number of these awards have gone directly to advanced reactor startups, and they hope to push forward a number of technologies related to advanced reactors or next-generation light-water reactors.

We wanted to take a little closer look at the awards in this post.  To explain, GAIN awards come in the form of “vouchers” which provide awardees “with access to the extensive nuclear research capabilities and expertise available across the U.S. DOE national laboratories complex.”  Some of the advanced reactor ventures that received vouchers include Elysium Industries, Kairos Power, Muons, Oklo, Terrestrial Energy, Transatomic Power, and others, covering a broad swatch of different reactor types.  One nuclear battery startup, named MicroNuclear, also received an award—nuclear battery technologies have been gaining traction, with the “U-Battery” consortium engaging with the Canadian Nuclear Safety Commission for pre-licensing review in March of this year.  In addition, a number of consulting and engineering companies also received awards, and the results from those projects could benefit a number of different reactor designs.

The most popular participating DOE laboratories are the Idaho, Argonne, and Oak Ridge National Laboratories, although Sandia and Pacific Northwest National Laboratories also will be partnering with certain awardees.  About half of the research projects touch on molten salt reactor technologies, focusing on topics such as different salt chemistries, thermal hydraulics, and waste reprocessing.  A number of awards focus on metal-cooled fast reactors (including regulatory support), and modeling and simulation issues.  Five projects also have a focus on light-water reactor technologies, exploring areas such as small modular reactor concepts and waste reprocessing.

For any questions related to next-generation nuclear reactors or the GAIN initiative, please contact the authors.

Wednesday, the NRC staff held a public meeting related to emergency planning for SMRs and other new reactor technologies. Slides from the meeting can be found here.

A few observations from the meeting—

  • Although early in the process, if executed correctly, the NRC’s Emergency Planning rulemaking could significantly reduce costs for new small modular reactors, advanced reactors, and even medical isotope reactors.
  • There was significant discussion during the meeting on a number of areas, but in particular—
    • Whether the rule would be “risk-informed.”
    • How site-specific features would be factored into the rulemaking.
    • How proposed industrial facilities near a nuclear power plant would affect emergency planning.

The NRC staff made clear during the meeting that the rulemaking would be risk-informed and consequence-oriented, and would work to incorporate the safety advances provided by new reactor designs.

  • The NRC staff emphasized that it welcomes written comments as it moves forward with this rulemaking, and will lean on them in developing a proposed rule.  Comments on the regulatory basis document are due by June 27, 2017.

For additional discussion on the meeting, please contact the authors.

Published reports indicate that as many as 18 reactor designers are looking at the possibility of siting their first facility at Idaho National Laboratory, DOE’s lead laboratory for nuclear reactors. From time to time, there are similar expressions of interest in DOE’s Oak Ridge National Laboratory and Savannah River Site.

DOE facilities have much to recommend them for such an undertaking, including incredible nuclear expertise near-at-hand, locations that are both remote and friendly to nuclear undertakings, and plenty of open space. At the same time, it is important to recognize the unique challenges that come with such sites.

Entering into a site use permit with DOE requires an understanding of certain “immovables,” including: DOE mission requirements, present and future; DOE obligations to state regulators, particularly environmental regulators; past uses of the sites that may not yet be remediated, such as environmental contamination or unexploded ordnance; and appropriations law restrictions, which mean that DOE cannot spend money to address an issue until Congress appropriates the money for that purpose.

There are also discontinuities between nuclear safety, security and liability approaches applicable to DOE and the Nuclear Regulatory Commission that have to be accommodated. These could affect matters as diverse as site access, transfer of ownership and radiation exposure standards. Likewise, dealing with two federal agencies that have different roles will complicate compliance with certain laws that apply equally to both of them, such as the National Environmental Policy Act and the National Historic Preservation Act.

Finally, there are also unique financial considerations arising both out of sharing common services and buying services from DOE.

None of these issues are insoluble, but it will take time and flexibility in approach to reach agreement. A reactor designer looking at a DOE site should go into it with eyes open and a large measure of patience for the negotiation that will be required.

Hogan Lovells has experience with negotiating these types of unique agreements with DOE. For additional information please contact one of the authors below.

Mary Anne Sullivan
Dan Stenger
Amy Roma
Sachin Desai

Scientists at MIT have put forward a novel idea for building a demonstration nuclear reactor—one that could limit licensing challenges with the U.S. Nuclear Regulatory Commission (NRC) while still providing useful testing opportunities for advanced reactors.  The MIT facility already operates a six megawatt light water reactor.  The proposal is to build a second molten salt reactor, but one that is subcritical and which would use neutrons from the existing reactor to power the fission process, avoiding the need for a new NRC license.  If it takes off, it could only cost an estimated $15 million to build before fueling.

A lack of demonstration reactors is a critical barrier to the progress of advanced reactors, as testing is key to validating new ideas in this generally risk-averse industry.  As identified by the Nuclear Innovation Alliance,  “[a] critical obstacle to financing innovative nuclear power technologies is that there is no clear pathway for a first pilot-scale demonstration.”  The idea proposed here, even if imperfect, presents a new approach to testing new reactor designs.

There is certainly lots of attention behind advanced reactors.  Last week a Senate committee passed 18 to 3 the Nuclear Energy Innovation and Modernization Act, a bill to modernize the NRC’s licensing framework for advanced reactors.  And interest in the industry continues to grow.  This past week, nuclear enrichment giant Urenco discussed that it is partnering with engineers at Amec Foster Wheeler to develop a U-Battery, which would generate approximately 10 MW of power or heat (1% of a modern reactor) in a compact battery form.  But new ideas require testing—and hopefully MIT’s plan can help the industry get past a critical hurdle to future growth.

Last Tuesday, February 21, Third Way held a summit in Washington, D.C. focused on the advanced reactor industry, the Advanced Nuclear Summit & Showcase.  Among the many notable events at the conference was the strong bipartisan participation by Members of Congress.  Senator Chris Coons gave a keynote speech at the summit, and noted remarks made earlier by Senators Murkowski, Booker, Scott, and Whitehouse, leaders of the Democratic and Republican parties.

Senator Murkowski’s remarks noted in particular the importance for advanced reactor legislation.  She, along with other Congressmen, including Senators Whitehouse and Booker, reintroduced in January the Nuclear Energy Innovation Capabilities Act (for more information about this and related legislation see our discussion of bills put forward in 2016 and 2017).  She pledged at the conference that she would push it forward and make it a priority in the new year.

We are excited to see advanced reactor legislation move forward in Congress this year, and will keep our readers updated.  For more on advanced reactor legislative and regulatory developments, please reach out to the authors.

Small modular reactors (SMRs) have seen some positive legal and policy developments recently.

A bill to provide tax exemptions for manufacturers of small modular reactors was introduced in the Washington state legislature.  Although in the early stages, this bill provides a new and potentially useful model for other states to follow to boost their advanced nuclear and SMR industries.  At a recent conference at Argonne National Laboratory, NuScale, the first SMR reactor to submit a design certification application to the U.S. Nuclear Regulatory Commission, highlighted the potential SMRs hold for creating U.S. manufacturing jobs. Washington state’s legislation is a timely effort to court NuScale and other SMR designers, with a mission to increase “the number of jobs in the small modular reactor industry in Washington.”

Public efforts to boost private-sector progress in developing next-generation nuclear reactors are essential to the growth of this societally important industry.  Recently, the U.S. Department of Energy’s (DOE’s) Gateway for Accelerated Innovation in Nuclear (GAIN) initiative, which seeks to leverage DOE laboratory facilities to benefit private reactor startups, was specifically called out by Secretary of Energy Perry in his confirmation hearing as an example of a successful public-private partnership.  In this vein, a recently launched organization, SMR Start, seeks to provide an additional targeted boost to policy reform efforts, with an aim towards “the successful commercialization of SMRs by enabling the establishment of supportive policies.”

Third Way, a strong promoter of policies to support the advanced nuclear industry, will likely discuss methods to provide public support for advanced reactors at its upcoming Advanced Nuclear Summit & Showcase being held this Tuesday, February 21 (and which can be livestreamed here).

For questions on encouraging public policy support for next-generation nuclear technologies, please contact the authors.


On February 9, 2017, Amy Roma, a partner in the firm’s nuclear practice, delivered a keynote address at the 13th annual Platts Nuclear Energy Conference, in Washington, D.C.

Her address highlighted a number of promising developments for the nuclear industry, from the debut of state incentive programs that reward nuclear energy for its zero-emissions attributes, to the growth of the advanced reactor community.  Not only have we seen advancements in the United States regarding government support and licensing of advanced reactors, but as identified in her comments, five advanced reactor designs have been submitted to the Canadian nuclear regulator for initial design approval.  Her address also discussed updates regarding spent fuel storage and took notice of international growth in the nuclear industry.

We want to share her remarks with you, click here to download. If there any questions as to her address or its contents, do not hesitate to contact the authors.