The House Committee on Energy and Commerce, Subcommittee on Energy held a hearing February 6, 2018 to discuss the challenges facing America’s nuclear infrastructure, including advanced reactor development.  The hearing was called “DOE Modernization: Advancing the Economic and National Security Benefits of America’s Nuclear Infrastructure.” A video of the hearing can be watched here.

A background memorandum released in advance explained that the hearing would explore the following important topics:

  • National security implications associated with U.S. nuclear leadership and a domestic nuclear energy industry;
  • The outlook for domestic and international development of nuclear energy and application of nuclear technologies;
  • Challenges and opportunities regarding maintaining the components of a domestic nuclear fuel cycle; and
  • Options to develop and deploy advanced nuclear technologies

The hearing witnesses included (their statements are also provided below):

  • Mr. Art Atkins, Associate Deputy Administrator for Global Material Security, U.S. Department of Energy, National Nuclear Security Administration: Witness Statement
  • Mr. Victor McCree, Executive Director of Operations, U.S. Nuclear Regulatory Commission: Witness Statement
  • Mr. Ed McGinnis, Principal Deputy Assistant Secretary, U.S. Department of Energy, Office of Nuclear Energy: Witness Statement
  • Mr. James Owendoff, Principal Deputy Assistant Secretary, U.S. Department of Energy, Office of Environmental Management: Witness Statement
  • Dr. Ashley Finan, Policy Director, Nuclear Innovation Alliance: Witness Statement
  • Ms. Maria Korsnick, President and CEO, Nuclear Energy Institute: Witness Statement
  • The Honorable Bill Ostendorff, Former NRC Commissioner and Distinguished Visiting Professor of National Security, U.S. Naval Academy: Witness Statement
  • Dr. Mark Peters, Director, Idaho National Laboratory: Witness Statement
  • Mr. David Trimble, Director, Government Accountability Office, Natural Resources and Environment: Witness Statement

Summary of Key Issues for Advanced Reactor Community

During his opening remarks, Full Committee Chairman Greg Walden (R-OR) noted that “[a]t root today, is a question of our nation’s capabilities not only to propel nuclear innovation generally, but to ensure an infrastructure that is critical to our economic and our national security.” He promised to align U.S. policy with a changing world: “we must recognize the world looks different than it did at the birth of the nuclear age. Consequently, we must take steps to update the relevant policies. These policies must be forward looking to enable innovation and the development and deployment of new advanced nuclear technologies.”

Once witness questioning began, the Subcommittee quickly honed in on issues facing the advanced reactor community and expressed bipartisan support for U.S. government help to develop and deploy these innovative new designs. Among the issues discussed were the following:

  • SMR commercialization and deployment schedule

The first question asked at the hearing, by Subcommittee Chairman Fred Upton (R-MI), was on small modular reactor (SMR) commercialization and when the U.S. was going to see SMR designs being approved and deployed in the commercial sector. In response, Ed McGinnis, Principal Deputy Assistant Secretary, U.S. Department of Energy, Office of Nuclear Energy explained: “We are at a tipping point,” with the U.S. leading in design development but challenged in deployment of the technologies. He went on to note that NuScale project that can be “game changing” if successfully deployed.

Last year, reactor designer NuScale submitted to the U.S. Nuclear Regulatory Commission the first SMR reactor design certification application  in the United States. The NRC recently approved–in a first of a kind decision–that NuScale would not need a safety-related electrical power system. This means that the NRC believes the reactor can remain in a safe condition in the event it loses electricity. Currently, all nuclear power plants in the U.S. have safety-related electrical power systems. And the fact that NuScale does not need one is a testament to the inherent different nature of SMRs—and the first time the NRC has recognized as such during its review of an application.

On that front, Victor McCree, the NRC’s Executive Director of Operations, explained during the hearing that the NRC’s decision about NuScale reflects a “philosophical” change that will lead to more efficient and effective reviews. Mr. McCree continued on to explain that an NRC approval of the NuScale design would open the market in a way that large reactors cannot, including by being more affordable and improving grid reliability. Mr. McGinnis further explained that with a number of large-scale reactors facing shutdown, getting SMRs into the pipeline is an imperative, and among other things, DOE was working on integrating SMRs with wind turbines and solar plants. With SMRs versatility and fast ramp up ability, Mr. McGinnis explained, SMRs could be paired with renewables to firm up their intermittent power and delivery of emissions free power.

  • Concern with amount of DOE funding to support SMR commercialization and deployment

Several members expressed concern that—with less than US$30 million invested in advanced reactors—whether DOE is really pushing for commercialization of SMRs. In response, Mr. McGinnis noted that a lot of work was being performed at the national labs and DOE continues to work on deployment matters.

  • High-assay LEU and Test Reactors

Mr. McGinnis from DOE also explained that DOE was working towards development of a fast neutron reactor and growing a capacity for high-assay LEU. Mr. McGinnis acknowledged that next-generation nuclear innovators need a test reactor, which itself would require high-assay LEU. He added that NNSA is taking seriously the challenge of developing a high-assay LEU capacity for testing and eventual industry use.

  • Deployment of US SMRs overseas

A number of members asked about deployment of US SMRs abroad. In response, Mr. McGinnis remarked that a number of countries are interested in U.S. SMR designs and watching their progress. He remarked that the U.S. is the world expert in designing SMRs, and that if the U.S. was able to prove the technology domestically it would open up the international market. The hearing participants also discussed ways to speed up the U.S. nuclear export approval process. On that last point, Congressman Bill Johnson (R-OH) noted that he intended to introduce legislation soon to improve the export control authorization process. At the end of 2017, Chairman Upton and Congressman Johnson sent a letter to Energy Secretary Rick Perry saying that the slow pace of DOE authorizations for commercial nuclear energy exports is having harmful consequences for U.S. competitiveness and national security. “While DOE is in the process of implementing some targeted reforms, more work remains to accelerate agency decision-making so that our domestic nuclear technology leaders have timely answers necessary to compete effectively with other nations’ nuclear programs,” the letter said.

  • NRC fee reform

When asked about if the NRC is undergoing reviews of its fee structure and looking for ways to improve methodology especially when non-LWR reactors look for licensing, Mr. McCree confirmed that the NRC is looking at this issue.

With a flurry of attention on advanced reactors lately, the hearing brings welcome attention the advanced reactor community needs. Please contact the authors with any questions.

The Department of Energy (DOE) and Nuclear Energy Institute (NEI) have issued a trio of reports touching on important issues for small modular and advanced reactors:

The debut of these three reports so closely apart highlights the variety of issues new reactor developers have to work through simultaneously, from licensing to fuel supply to market dynamics.

The first report recognizes a common industry complaint—that although the legal standard for issuing new reactor licenses has not changed, in reality “the [Nuclear Regulatory Commission] now requires more effort from applicants” to meet that same standard—even when new reactor designs are inherently safer.  The report recommends that the NRC:

  • Refrain from asking for design details that do not have a nexus to safety (shortening review times);
  • Modernize design requirements to “be more systematic, predictable and repeatable”;
  • Establish predictable staged licensing pathways; and
  • Reign in unnecessary detail in setting a plant licensing basis to allow for more flexibility to make changes during construction.

The second report tackles a sleeping giant, the lack of a pathway to high-assay low-enriched uranium (high-assay LEU) (that is, uranium enriched between 5% to 20% with fissile elements).  While there is no prohibition to commercial access to high-assay LEU, there is also currently no domestic source for this fuel type.  Current fuel cycle facilities are capped legally (and sometimes physically) to work with ~5% enriched LEU.  This is a bottleneck to realizing the promise of advanced reactors, as developing the infrastructure for this industry will require “a minimum of seven to nine years.”  The report recommends that DOE and NRC collaboratively:

  • Support development of new shipping packages capable of holding high-assay LEU;
  • Develop “criticality benchmark data needed” to enable the private sector to license high-assay LEU “facilities and transport packages”;
  • Directly support the design of high-assay LEU facilities and fuel types; and
  • Finalize guidance documents on Material Control and Accountability and physical security for “Category II” facilities that contain high-assay LEU.

The third report follows hot on the heels of the Federal Energy Regulatory Commission’s decision to terminate a rulemaking proposed by DOE Secretary Perry that would establish a resiliency pricing scheme for baseload generation sources, including nuclear.  The DOE-commissioned report provides additional evidence for the resiliency benefits of nuclear power, but is more focused on the benefits of small modular reactors (SMRs) to support federal and military facilities; in particular, forward operating bases that often rely on uncertain civilian grids and/or trucked in fuel.  The report notes that SMRs are naturally hardened due to their underground construction and passive safety systems, are designed to provide scalable power that is reliable and grid-independent, and can provide years’ worth of fuel security—making them ideal for many national security contexts.

Despite its national security theme, the DOE-commissioned report suggests a novel solution to support SMRs that is based on the civilian sector—by engaging DOE support as a customer for the Tennessee Valley Authority small modular reactor project at Clinch River.  According to the report, DOE’s Oak Ridge National Laboratory and related facilities could rely on SMRs’ unique, resilient power for their mission-critical activities, use the SMRs for nuclear research, and at the same time help bring first-generation SMR technologies to market.  The report details a hypothetical transaction structure to support DOE involvement in the Clinch River project, and closes with other policy initiatives to complement this effort.

For more about the benefits and key issues facing next-generation nuclear reactors, please contact the authors.

Nuclear power has had a busy year in 2017.  One of the most important trends for preserving the existing fleet of operating nuclear power plants has been the financial commitment  by US states to support nuclear power operating in their states and preserve their largest source of carbon-free power—and the thousands of jobs that go with it. This represents a significant reversal in state policy towards nuclear power, which traditionally has been left out of state programs promoting low or carbon free power—despite the fact that 60 percent of the carbon free power in the U.S. is generated by nuclear power. And the new state involvement has the potential to be a game-changer for next-generation reactors.

To highlight some of the key state activities from this year:

  • New York’s Clean Energy Standard and Illinois’s SB 2814, with their Zero-Emissions Credit (ZEC) programs, came into effect this year.  These programs represent among the first significant state efforts to  compensate nuclear power for its environmental benefits, and has helped keep a large number of nuclear power plants operational. Ohio has also introduced legislation to implement similar ZEC-type programs.
  • Federal district courts separately upheld both New York’s and Illinois’s ZEC programs against federal pre-emption and Constitutional challenges. Both decisions have been appealed, but nonetheless allow the state programs to continue in the interim.
  • Connecticut passed legislation that would allow nuclear power to compete directly against other zero-carbon resources in certain circumstances.
  • New Jersey introduced and advanced legislation to support nuclear power through “nuclear diversity certificates,” which would support the nuclear reactors for their environmental and fuel diversity attributes.

The core of many of these programs is valuing the benefits of nuclear power using the “social cost of carbon” framework. The social cost of carbon represents a potential measure of the harms caused by carbon emissions (and therefore, the value of carbon avoided by zero emissions generation). It was developed by a federal government interagency working group and has found itself increasingly referenced as part of state climate initiatives.

Although these programs directly benefit the current light water reactor fleet, it also signifies a larger trend by states to put nuclear power on an equal footing to other forms of low or zero-carbon generation sources.  This trend cannot be ignored by the advanced reactor industry. Just as renewable energy grew through state-level efforts to support the industry through renewable energy credit programs and portfolio standards, next generation reactor developers may want to look to states along with the federal government as potential sponsors for first-of-a-kind reactor projects.

These activities also explore the myriad different legal routes states can pursue to support the environmental and societal benefits of nuclear power. The U.S. energy grid is an ecosystem with many state, regional, and federal actors all working together to provide electricity at low cost and in accordance with legitimate policy goals. Disputes are likely to arise (and have arisen) as to where the borders between state and federal involvement. But that does not change the fact that states have always had a role in the in the promotion and regulation of nuclear power. An opportunity now exists to redefined that relationship, and for a new generation of state leaders to reengage with a new generation of reactor developers, for the benefit of all involved.

For more on state legislative activities affecting nuclear power, please contact the authors.

On Wednesday, November 15, the US Nuclear Regulatory Commission (NRC) staff published a revised and final regulatory basis document in support of its rulemaking to reform emergency planning requirements for small modular and advanced reactors, including medical isotope reactors.  This rulemaking promises to significantly reduce costs for next generation nuclear plants by employing individualized, risk-informed requirements as opposed to rigid deterministic ones.

Fifty-seven individuals, companies, and organizations commented on the draft regulatory basis document.  The NRC staff made a number of edits to respond to the comments, including further incorporating risk-informed concepts into the text of the regulatory basis, and increasing discussion of the agency’s framework for establishing the size of emergency planning zones for new reactor designs.  According to the NRC’s rulemaking schedule, a proposed rule is due to be published early 2019, with a final rule in 2020.

This action by the NRC coincides with exciting developments for the US Department of Energy.  This week the Transient Reactor Test Facility (TREAT) at Idaho National Laboratories successfully completed low-power operations after being brought out of standby since 1994.  As explained in industry press, the restart of TREAT is a big success story for the agency, which refurbished the facility a year ahead of schedule and $20 million under budget.  TREAT specializes in testing new reactor fuels under heavy irradiation conditions, to see how they perform particularly in accident scenarios.  Testing new fuel designs is a linchpin to commercializing new reactor designs, as many of them rely on completely new concepts for nuclear fuel.

TREAT may also be getting company.  This same week, the House of Representatives Committee on Science, Space, and Technology approved an exciting new bill markup, HR 4378, the “Nuclear Energy Research Infrastructure Act of 2017.”  This piece of legislation tries to deliver on repeated calls to build a new test reactor in the United States.  It calls for a fast-neutron test facility to be completed in the mid-2020s that supports (among other things) high-temperature testing, testing of different coolant types, medical isotope production, and which is designed to be upgrade-able over time.  Funding is set aside, with $35 million in 2018, scaling up to $350 million from 2023 to 2025.

For more on any of these topics, feel free to contact the authors.

Hogan Lovells had the honor Monday of hosting the Washington, D.C. launch party for Ambassador Thomas Graham’s new book “Seeing the Light: The Case for Nuclear Power in the 21st Century.”  As part of the launch party, Hogan Lovells partner Amy Roma sat down with Tom and three other distinguished guests for a panel on the future of nuclear power.  The other panelists included: Senator John Warner (former Secretary of the Navy; five term Virginia Senator), Mike Wallace (current Board member for Emirates Nuclear Energy Corporation; former Constellation Energy COO and Vice-Chairman), and Jim McDonnell (Director of DHS’ Domestic Nuclear Detection Office).

The book has drawn strong critical acclaim. Richard Rhodes, the Pulitzer Prize recipient for The Making of the Atomic Bomb, calls this publication “the best book” written on the subject of commercial nuclear power. The book makes clear that “[n]uclear power is not an option for the future but an absolute necessity.” It also explains that:

Fortunately, a new era of growth in this energy source is underway in developing nations, though not yet in the West. Seeing the Light is the first book to clarify these realities and discuss their implications for coming decades. Readers will learn how, why, and where the new nuclear era is happening, what new technologies are involved, and what this means for preventing the proliferation of weapons. This book is the best work available for becoming fully informed about this key subject, for students, the general public, and anyone interested in the future of energy production, and, thus, the future of humanity on planet Earth.

The panel provided an exciting opportunity to marry the research and conclusions from Seeing the Light with the experiences and insights of those working to make the future of nuclear power—including next generation nuclear power—a reality. Some of the many insights from the panel included the following:

  • National Security Should Be Considered, as well as Climate Change: Seeing the Light clearly explains that the urgent threat of climate change requires nuclear power to work alongside renewables. In addition, the panel discussed at length that national security is also an important concern, and one that national leaders may also readily get behind. From an inability to power the nuclear navy to losing our seat on the table with regards to non-proliferation, the panelists repeatedly brought home the importance of having a robust commercial nuclear industrial base to keep the country at the cutting edge. The panelists expressed grave concern that a downward spiral in nuclear investment and talent threatens the U.S. on multiple fronts.
  • Effective Non-Proliferation Requires Peaceful Nuclear Power: While the book argues that the global nuclear non-proliferation treaties of the 20th century were not just giveaways from non-weapons states to the nuclear weapons states. Instead, they were agreements that in exchange for not engaging in nuclear weapons, non-weapons states would have assistance to develop a robust commercial, peaceful nuclear industry. And the U.S. has an obligation to these parties to assist them with their programs.  Moreover, the lack of a U.S. presence in foreign nuclear programs, weakens the U.S. voice on non-proliferation issues.
  • Ensuring New Nuclear Meets Top Safety and Security Standards. The panelists also all agreed that the use of U.S. technology abroad means that U.S. standards for safety and security, which are the highest in the World, will be incorporated into foreign reactor programs.
  • Top-Level Government Support Needs To Complement Private Action: All the panelists also agreed that the development of nuclear power in the 20th century was a true public-private partnership, with both Congress and the Executive Branch offering support. And this partnership delivered dividends countless times over back to the government and taxpayers. With a new wave of reactors moving forward around the world and the next generation of nuclear power on the horizon, the panelists agree that this needs to happen again, and that circumstances are right to make real progress towards this in the near future.

For more on the book, the panel, or on the potential role nuclear power can play in our future, please contact the authors.

On Friday, U.S. Department of Energy (DOE) Secretary of Energy Rick Perry proposed a dramatic change to U.S. Federal Energy Regulatory Commission (FERC)-regulated energy markets.  His rule would compensate “reliability and resiliency” resources potentially both on a market rate and/or a cost-of-service rate.  He has put forward a tight timeline for the rule, directing FERC to make a final action on the proposed rule within 60 days after publication in the Federal Register, or alternatively, to adopt the current rule as an interim measure to be modified in the future.  A complete analysis of the rule by Hogan Lovells can be found here.

Although geared towards existing nuclear and coal power plants, in the long term advanced reactors could be well-positioned to benefit from the new rule.  It is unclear if this rule will stem the tide of coal plant retirements, and without coal, nuclear power for the most part will be the only remaining generation source capable of meeting the requirements to benefit under the rule (e.g., eligible generation sources must have 90 days-worth of fuel on site).

Comments will be collected on the rule for 45 days after publication in the Federal Register.  We encourage all next-generation nuclear providers to get involved and comment on the new rule.  Instead of a short-term measure to support existing resources, this rule should be seen as a fundamental recognition of one of the many uncompensated for benefits of nuclear power.  If properly structured, this rule has the potential to support the nascent next-generation nuclear industry as it develops.  For any questions on the proposed rule or how to comment on it, please contact the authors.

Yesterday, NASA awarded a nuclear contractor, BWXT, nearly $20 million to explore conceptual designs for a nuclear thermal propulsion system.  This is one sign that nuclear power may see a comeback in space, raising interesting legal and regulatory questions.

Nuclear space propulsion can offer much higher thrust with less weight than chemical rockets.  The BWXT project is part of NASA’s “Game Changing Development Program,” and has the potential to significantly alter space travel.  Although the exact design of any nuclear space propulsion system to result from this effort is unclear, it is clear that any design would be a novel, next-generation reactor concept.

Nuclear power has been long embraced by NASA.  For example, the Voyager spacecraft, the farthest man-made objects in space, use nuclear batteries.  NASA’s Orion and NERVA projects directly experimented with nuclear propulsion, although those programs were terminated.  But as NASA has more closely looked at travel to Mars, nuclear propulsion has reentered the fray as a potentially suitable means of travel.

The legal questions that arise from the use of nuclear power in space are varied.  There are treaty issues.  Five treaties and five declarations of legal principles govern many aspects of the exploration and use of outer space, and these and other legal documents would touch on increased reliance on nuclear power.  The Orion project, which essentially sought to use nuclear explosions to drive spacecraft, was cut off by a treaty, the Nuclear Test Ban Treaty.  There are also commercial issues, such as a shortage of plutonium for nuclear space batteries (radioisotope generators).

Moreover, the current legal regime focuses on the government’s use of nuclear power for peaceful purposes in space.  DOE has extensive experience with radioisotope generators, and most if not all U.S. nuclear power systems launched to date, including for both security and NASA missions, have been provided under the NASA/DOE Radioisotope Power Systems Program. Space, however, is quickly being privatized, with independent companies aiming to get to Mars far earlier than NASA is planning.  The entry of private companies into space may call for an increased role for the government to take on a role as a regulator of private nuclear spacecraft efforts.

Jurisdictional oversight would need to be addressed for commercial projects that do not fall under the authority of the Department of Energy.  For example, in the U.S., the nuclear regulator for civilian nuclear projects—the Nuclear Regulatory Commission—has its oversight limited to the jurisdictional boundaries of the U.S.  Other issues that would need to be addressed include fuel sources.  The United Nations Principles Relevant to the Use of Nuclear Power Sources in Outer Space provide a requirement that nuclear reactors in space use highly enriched uranium, not plutonium, which has historically been used in radioisotope generators.  Highly enriched uranium can be hard to procure in the commercial sector.  Pursuant to presidential directives, nuclear power sources in space may also need Presidential approval before launch.  Other issues that would need to be addressed include nuclear insurance and nuclear liability for third party damages.

Nonetheless, the use of nuclear power in space is not a new frontier for NASA, and the agency’s renewed interest presents a promising use of this powerful technology.  Moreover, the legal and commercial issues associated with any potential civilian use of nuclear technology in space do not appear to be insurmountable.  With the amount of energy nuclear power can provide, for long duration, while using small amounts of material, this technology makes sense for space travel and exploration.

For more on the use of nuclear power in novel applications, from space travel to micro-batteries and everything in between, please contact the authors.

The U.S. Department of Energy’s (DOE’s) Gateway for Accelerated Innovation in Nuclear (GAIN) announced last week its second round of awards.  A number of these awards have gone directly to advanced reactor startups, and they hope to push forward a number of technologies related to advanced reactors or next-generation light-water reactors.

We wanted to take a little closer look at the awards in this post.  To explain, GAIN awards come in the form of “vouchers” which provide awardees “with access to the extensive nuclear research capabilities and expertise available across the U.S. DOE national laboratories complex.”  Some of the advanced reactor ventures that received vouchers include Elysium Industries, Kairos Power, Muons, Oklo, Terrestrial Energy, Transatomic Power, and others, covering a broad swatch of different reactor types.  One nuclear battery startup, named MicroNuclear, also received an award—nuclear battery technologies have been gaining traction, with the “U-Battery” consortium engaging with the Canadian Nuclear Safety Commission for pre-licensing review in March of this year.  In addition, a number of consulting and engineering companies also received awards, and the results from those projects could benefit a number of different reactor designs.

The most popular participating DOE laboratories are the Idaho, Argonne, and Oak Ridge National Laboratories, although Sandia and Pacific Northwest National Laboratories also will be partnering with certain awardees.  About half of the research projects touch on molten salt reactor technologies, focusing on topics such as different salt chemistries, thermal hydraulics, and waste reprocessing.  A number of awards focus on metal-cooled fast reactors (including regulatory support), and modeling and simulation issues.  Five projects also have a focus on light-water reactor technologies, exploring areas such as small modular reactor concepts and waste reprocessing.

For any questions related to next-generation nuclear reactors or the GAIN initiative, please contact the authors.

Both Congress and the U.S. Department of Energy (DOE) moved forward last week with significant programs to support the development of nuclear power in the United States. Congress took a critical step towards extending the Production Tax Credit (PTC) for nuclear power, and DOE announced nearly $67 million in new grants for nuclear power research.

On Thursday June 15, 2017, the House Committee on Ways and Means approved H.R. 1551, legislation designed to essentially remove the deadline on eligibility for the nuclear PTC. This bill is not only very important for the four AP1000 nuclear reactors under construction in Georgia and South Carolina, but potentially also for next-generation nuclear plants. These plants can take advantage of the remaining credits left over after the AP1000 projects are completed (from the 6,000 MW available under the current tax credit); the credits would normally expire on January 1, 2021. The bill can be found here.

The day before, on Wednesday June 14, DOE announced nearly $67 million in grants awarded towards advanced nuclear energy research from a series of funding programs. The grants include:

  • $37 million under the “Nuclear Energy University Program” to support “university-led nuclear energy research and development projects” and also fund “reactor and infrastructure improvements” towards the nation’s 25 university research reactors;
  • $11 million towards three “Integrated Research Projects,” which are complex research projects led by a coalition of “universities, industrial and international research entities, and the unique resources of the DOE national laboratories”;
  • $6 million in research towards “advanced sensors and instrumentation, advanced manufacturing methods, and materials for multiple nuclear reactor plant and fuel applications”; and
  • $12+ million towards projects taking advantage of “Nuclear Science User Facilities” to “investigate important nuclear fuel and material applications.” Five of these projects are industry-led and thus take advantage of the GAIN Initiative, which provides industry with a means to access facilities and resources “across the DOE complex and its National Laboratory capabilities.”

If you have any questions about the nuclear PTC or DOE research programs, please contact the authors.

Published reports indicate that as many as 18 reactor designers are looking at the possibility of siting their first facility at Idaho National Laboratory, DOE’s lead laboratory for nuclear reactors. From time to time, there are similar expressions of interest in DOE’s Oak Ridge National Laboratory and Savannah River Site.

DOE facilities have much to recommend them for such an undertaking, including incredible nuclear expertise near-at-hand, locations that are both remote and friendly to nuclear undertakings, and plenty of open space. At the same time, it is important to recognize the unique challenges that come with such sites.

Entering into a site use permit with DOE requires an understanding of certain “immovables,” including: DOE mission requirements, present and future; DOE obligations to state regulators, particularly environmental regulators; past uses of the sites that may not yet be remediated, such as environmental contamination or unexploded ordnance; and appropriations law restrictions, which mean that DOE cannot spend money to address an issue until Congress appropriates the money for that purpose.

There are also discontinuities between nuclear safety, security and liability approaches applicable to DOE and the Nuclear Regulatory Commission that have to be accommodated. These could affect matters as diverse as site access, transfer of ownership and radiation exposure standards. Likewise, dealing with two federal agencies that have different roles will complicate compliance with certain laws that apply equally to both of them, such as the National Environmental Policy Act and the National Historic Preservation Act.

Finally, there are also unique financial considerations arising both out of sharing common services and buying services from DOE.

None of these issues are insoluble, but it will take time and flexibility in approach to reach agreement. A reactor designer looking at a DOE site should go into it with eyes open and a large measure of patience for the negotiation that will be required.

Hogan Lovells has experience with negotiating these types of unique agreements with DOE. For additional information please contact one of the authors below.

Mary Anne Sullivan
Dan Stenger
Amy Roma
Sachin Desai