On October 13, 2020, the U.S. Department of Energy (DOE) awarded X-energy and TerraPower $80M each for their respective initiatives to build advanced nuclear reactors.

The proposals were evaluated under the Advanced Reactor Demonstration Program (ARDP), a new endeavor in the Office of Nuclear Energy. According to Dr. Rita Baranwal, the Assistant Secretary for Nuclear Energy, these efforts are “important not only to our economy, but to our environment, because nuclear energy is clean energy.” In a press release, X-energy’s CEO, Clay Sell expressed his excitement for being selected and touted DOE and Congress’ work on this program as contributing to “safe, secure, clean and affordable technology to the US and many countries around the world.” ARDP facilitates a 50-50 cost-sharing partnership with the nuclear industry to ensure that advanced nuclear technology is rapidly demonstrated.

ARDP has three separate Advanced Reactor Demonstration Pathways: Advanced Reactor Demonstrations, Risk Reduction for Future Demonstrations, and Advanced Reactor Concepts for 2020. Each of these pathways is geared toward different purposes in the advancement of nuclear reactors. The awards to X-energy and TerraPower, which is partnering with GE-Hitachi, were granted under the Advanced Reactor Demonstrations pathway, which requires that winning projects are fully operational within seven years of the award. The projects must also result in an NRC-licensed advanced light-water or non-light water nuclear fission reactor. Awards for the other two pathways will be announced in December of this year.

What will X-energy and the TerraPower team offer the nuclear industry?

X-energy’s Xe-100 reactor:

  • 80-MW unit scalable to a 320 MWe “four-pack”
  • High temperature and gas-cooled
  • Uses TRi-structural ISOtropic particle fuel (TRISO)
  • Flexible electricity output—can be baseload or load-following—making it ideal on its own or to pair with renewable energy, like wind and solar.
  • Heat processing for various applications, like desalination and hydrogen production
  • Includes a TRISO (TRi-structural ISOtropic particle) fuel fabrication facility
  • As it is nuclear power, it doesn’t emit carbon

TerraPower’s Natrium reactor:

  • 345-MW sodium-cooled reactor
  • Operates at a high temperature and provides molten-salt-based energy storage
  • Flexible electricity output, making it ideal on its own or to pair with renewable energy, like wind and solar.
  • Includes a new metal fuel fabrication facility
  • As it is nuclear power, it doesn’t emit carbon

For more information, please contact blog authors.