The start of the month has proven to be an exciting one for nuclear innovation in D.C.  A number of legal and regulatory activities have taken place which have implications for the next-generation nuclear industry, just a few of which are noted below.  (And for those at the ARPA-E conference, see our blog author Amy Roma speak today at the 2:15 panel “Quantifying Technical Risk for Advanced Nuclear Reactors”).

  • Last week was “Nuclear Innovation Week” in D.C. It consisted of three events highlighting both nuclear innovation and legal/regulatory reform: (i) Third Way’s Annual Advanced Nuclear Summit, (ii) the Nuclear Energy Institute’s (NEI’s) Nuclear R&D Summit, and (iii) a joint symposium hosted by the Gateway for Accelerated Innovation in Nuclear, NEI, and the Electric Power Research Institute.  Recordings of events from the Third Way summit are available online, and Amy spoke there on the topic of “Will the US Be a Global Leader in Advanced Nuclear Energy.”
  • In Congress, the Nuclear Energy Innovation Capabilities Act (S.97) passed the Senate.  The legislation would help move advanced reactor concepts forward by encouraging the creation of a fast neutron test reactor, as well as a user facility called the National Reactor Innovation Center.  While it is unclear how money will follow, it is a step in the right direction and recognizes the critical need for test facilities for next-generation nuclear reactors. Of its other more notable elements, the bill would also push forward an “Advanced Nuclear Energy Cost-Share Grant Program,” under which DOE can make cost-share grants to applicants for the purpose of funding a portion of NRC licensing fees, including both pre-application and application reviews.
  • The NRC issued Regulatory Guide 1.232, “Guidance for Developing Principal Design Criteria For Non-Light-Water Reactors.” As we discussed when the draft regulatory guide came out, this is a critical guidance document for non-light water reactors.  Appendix A to 10 CFR Part 50 sets for the general design criteria for NRC-licensed reactors, which are essentially the bounding safety requirements every new reactor has to meet.  These requirements, however, are designed for light-water reactors and do not apply well to non-light water designs (e.g., Criterion 14 sets requirements concerning reactor “pressure” boundaries, but many advanced reactors would not operate above atmospheric pressure).  There are three appendices to the report, which set forth general “advanced reactor design criteria,” as well as specific design criteria for sodium-cooled fast reactors and modular high-temperature gas-cooled reactors.  This guidance document, which attempts to update the NRC’s general design criteria to address this disconnect, is the product of a years-long DOE-NRC effort, paired with industry and public input.

And the month is not letting up.  This week is the NRC’s annual Regulatory Information Conference, where advanced reactors are taking center stage.  This week is also the ARPA-E Energy Innovation Summit, with Amy speaking on the panel, “Quantifying Technical Risk for Advanced Nuclear Reactors” (2:15 Tuesday).  ARPA-E has established a program to fund enabling technologies for next-generation reactors, called “MEITNER.”  The program seeks to help nuclear innovators leapfrog in development by providing advanced modeling and simulation tools, access to subject matter experts from nuclear and non-nuclear disciplines, and collaborative design assistance.  APRA-E is in itself an novel concept for how to commercialize technology research, and uses unique funding mechanisms to more efficiently fund energy innovation.

For more on any of the above topics, or on what else is going on in the nation’s Capital in support of nuclear energy, please contact the authors.