A bipartisan group of nine U.S. senators has introduced the Nuclear Energy Leadership Act (NELA) (S 3422), a bill designed to help the United States return to its lead in nuclear energy technology.  The bill sponsors explain that the U.S. has yielded this position to Russia and China–weakening our energy security, economic competitiveness, and national security.  The blog authors, in collaboration with the Center for Strategic and International Studies, have recently published on just this issue in “Back from the Brink: A Threatened Nuclear Energy Industry Compromises National Security” (Jul. 2018).

The bill covers a range of activities to fund research, development and accelerated deployment of advanced nuclear energy technologies.  The one-page summary of the bill issued by the Senate Committee on Energy and Natural Resources explains–

To reestablish global leadership, the U.S. must have a healthy nuclear industry capable of designing and deploying the most advanced reactor concepts in the world at a competitive price. As we look for clean, safe, reliable, flexible, and diverse power sources to meet the nation’s energy needs, advanced reactors will play a critical role in that mix.

Notably, the bill would:

  • Direct the U.S. government to enter into long-term power purchase agreements (PPAs) with nuclear reactors.
  • Promote the development of advanced reactors and fuel by strategically aligning U.S. government and industry interests, which is intended to enable U.S. developers to compete with their state-sponsored competitors from Russia and China.
  • Construct a fast neutron-capable research facility, which is crucial to test important new nuclear technologies and demonstrate their safe and reliable operation. Currently the only two facilities in the world like this are in Russia and China.
  • Develop a source of high-assay low-enriched uranium, which is the intended fuel for many advanced reactor designs, from U.S. government stockpiles. Again, both China and Russia have these capabilities domestically, but the U.S. does not.

Section by Section Breakdown

The Senate Committee on Energy and Natural Resources also released a section-by-section analysis of NEAL, which we summarize below, paying particular attention to the PPA provision, which could be a near-term game changer for the advanced reactor industry.

  • S. Government Power Purchase Agreements (Sections 2 and 3). Notably, the bill would create a pilot program for the U.S. government to enter into long-term PPAs with commercial nuclear reactors.  Under the bill—
    • The Secretary of Energy must consult and coordinate with other Federal departments and agencies that could benefit from the program, including the Secretary of Defense and the Secretary of Homeland Security.
    • At least one PPA has to be in place with a commercial nuclear reactor by the end of 2023.
    • The maximum length of the PPA is extended from 10 to 40 years, and the PPAs can be scored annually. Currently, nuclear energy is at a disadvantage when competing for federal PPA, due to a law that pre-dates commercial nuclear power and limits PPAs to 10 years. Initial capital costs for nuclear reactors are paid for over a period beyond ten years, which means 10-year PPAs do not work for nuclear projects, so this change would be an important development for the industry.
    • In carrying out the pilot program, the Secretary of Energy must give special consideration to PPAs for “first-of-a-kind or early deployment nuclear technologies that can provide reliable and resilient power to high-value assets for national security purposes or other purposes…in the national interest, especially in remote off-grid scenarios or grid-connected scenarios that can provide capabilities commonly known as ‘islanding power capabilities’ during an emergency scenario.”

The other provisions of the bill, as described in the section-by-section analysis are summarized below.

  • Advanced Nuclear Reactor Research and Development Goals (Section 4). In order for the American nuclear industry to compete with state-owned or state-sponsored developers in rival nations – especially China and Russia – significant collaboration between the federal government, National Labs, and private industry is needed to accelerate innovation. This provision directs the Department of Energy (DOE) to establish specific goals to align these sectors and send a strong and coherent signal that the U.S. is re-establishing itself as a global leader in clean advanced nuclear technology.
  • Nuclear Energy Strategic Plan (Section 5). There has not been a cohesive long-term strategy for the direction of U.S. nuclear science and engineering research and development policy across administrations.  This section requires DOE’s Office of Nuclear Energy to develop a 10-year strategic plan that supports advanced nuclear R&D goals that will foster breakthrough innovation to help advanced nuclear reactors reach the market.
  • Versatile, Reactor-Based Fast Neutron Source/Facilities Required for Advanced Reactor R&D (Section 6). For the U.S. to be a global leader in advancing nuclear technology, we need the ability to test reactor fuels and materials. Currently, the only machines capable of producing a fast neutron spectrum are located in Russia and China. This measure directs DOE to construct a fast neutron-capable research facility, which is necessary to test important reactor components and demonstrate their safe and reliable operation – crucial for licensing advanced reactor concepts.
  • Advanced Nuclear Fuel Security Program/High-Assay Low-Enriched Uranium Availability (Section 7). A healthy domestic uranium mining, enrichment, and fuel fabrication capability that meets industry needs is another prerequisite for reestablishing U.S. nuclear leadership. Many advanced reactors will rely on high-assay low-enriched uranium (HALEU), but no domestic capability exists to produce it. This section establishes a program to provide a minimum amount of HALEU to U.S. advanced reactor developers from DOE stockpiles, until a long-term domestic supply is developed.
  • University Nuclear Leadership Program/Workforce Development (Section 8). The nuclear energy industry, the Nuclear Regulatory Commission, and the National Nuclear Security Administration all require a world-class, highly-skilled workforce to develop, regulate, and safeguard the next generation of advanced reactors. This section creates a university nuclear leadership program to meet these workforce needs.

The bill was introduced by  Sens. Lisa Murkowski (R-Alaska), Cory Booker (D-N.J.), James Risch (R-Idaho), Shelley Moore Capito (R-W.Va.), Mike Crapo (R-Idaho), Richard Durbin (D-Ill.), Joe Manchin (D-W.Va.), Sheldon Whitehouse (D-R.I.) and Chris Coons (D-Del.).

For questions on the bill or the links between national security and the commercial nuclear power industry, please contact one of the authors listed below.

This month, the NRC published an early draft regulatory guide on the content of license applications for non-LWRs.  The document is designed to help license applicants apply the NRC’s movement towards a risk-informed/performance-based regulatory approach towards the drafting of an actual license application.

The document is in part the result of the Southern Company-led Licensing Modernization Project, which has resulted in the issuance of a number of informal reports discussing licensing reform for non-LWR reactors.  This draft regulatory guide is designed to more formally capture the results of those reports and follow-on discussions.   It addresses the designation of licensing basis events; safety classification and performance criteria for structures, systems, and components; and evaluation of defense in depth adequacy.  importantly, it largely adopts detailed draft industry guidance set forth in March of this year, although with certain clarifications.  One area of particular NRC focus concerns probabilistic risk analyses (“PRA”), where the agency appears to show a little hesitancy with the broad use of PRA proposed in the industry guidance.

The draft guidance is being issued to support future discussions, in particular an Advisory Committee on Reactor Safeguards meeting tentatively scheduled for October 30, 2018.  For more about the Licensing Modernization project, or recent NRC and industry guidance on contents for non-LWR license applications, please contact the authors.

In today’s international nuclear marketplace, foreign investment is a significant source of capital for U.S. next-generation nuclear ventures. However, about-to-be signed legislation has the potential to broadly expand the ability of the Committee on Foreign Investment in the United States (“CFIUS”) to review foreign investment into the United States directed towards the nuclear industry, as well as the ability of the U.S. government to control exports of emerging nuclear technologies.

The new legislation, expected to be signed today, will among other things: (1) increase the number of transactions falling under CFIUS jurisdiction, (2) make some CFIUS reviews mandatory, (3) and give CFIUS the ability to suspend pending investments.  The legislation will also (4) expand export controls for “emerging and foundational technologies.”  The advanced reactor community should be aware of the legislation as it could impact future investment plans.  The community may also want to involve itself in expected rulemakings that will clarify important parts of the legislation.

As background, CFIUS is a multi-agency committee, led by the Treasury Department, which has the ability to review foreign investments into the United States that pose a threat to national security. Under the current law, CFIUS is able to review transactions that allow a foreign entity to gain “control” over a US business that poses a national security risk—including U.S. businesses holding or involved in critical infrastructure and critical technologies, which includes nuclear power.  CFIUS works aside a separate, complex nuclear export control regime to police efforts by foreign powers to infiltrate critical infrastructure and technologies in a manner harmful to U.S. national interests.

The about-to-be-signed legislation, entitled the Foreign Investment Risk Review Modernization Act of 2018 and the Export Controls Act of 2018, have both been inserted into the John S. McCain National Defense Authorization Act for Fiscal Year 2019.  Hogan Lovells’ International Trade Practice has summarized key elements of the legislation in two client alerts (here and here).  The legislation has many components, but a few of which are worth calling out in more detail:

(1) Increasing the Scope of CFIUS Jurisdiction: Currently, the touchstone of CFIUS jurisdiction is whether any transaction would give a foreign entity control of a US business.   However, CFIUS will now be able to review many other types of transactions, including “any other investment[s]” (to be clarified by CFIUS by rulemaking) that concern critical infrastructure, critical technologies, or sensitive personal data of U.S. citizens.

Depending on how future CFIUS rulemaking efforts proceed, this could capture many types of investments in advanced reactor start-ups or fusion ventures, regardless if control is at stake—potentially even if the transaction just results in the foreign entity gaining access to material non-public technical information. CFIUS will also now be able to review changes to existing investor rights that could lead to the same result, as well as certain investments designed to get around CFIUS review.  Certain limited carve-outs exist for private equity and venture investments, but these are still to be clarified further.

(2)Making CFIUS Submissions Mandatory: Currently, while CFIUS can itself seek review of a transaction, generally no entity is required to submit a transaction to CFIUS for review (i.e., submissions are voluntary). However, businesses seeking investment involving foreign government backing will now have to submit “declarations” to CFIUS, and CFIUS would have 30 days to take a number of potential actions (again, to be clarified further by rulemaking). This piece of the legislation, like many others parts, is in response to increasing concerns around Chinese state-owned investment into sensitive US businesses.

(3) Allowing CFIUS to Suspend Transactions:  Currently, CFIUS can only recommend to the President that a transaction be blocked, making it in practice very hard and rare for a transaction actually to be blocked.  However, now CFIUS can suspend a proposed/pending transaction that appears to pose a threat to national security while it conducts its review.  This gives the committee a strong new tool to effectively kill transactions it does not favour.

(4)Intensifying U.S. Government Export Controls:  Alongside CFIUS reform, new legislation will allow the U.S. government to intensify how it controls exports of “emerging and foundational technologies.”  Currently such exports are controlled by a variety of regulators, including the U.S. Departments of Commerce and State, and in the case of nuclear power, also the U.S. Department of Energy and the U.S. Nuclear Regulatory Commission, under well-defined but also sometimes slow-to-change regimes.

This broad, new legislation appears designed to gives the Executive Branch important new mechanisms to quickly apply export controls to emergent fields that concern U.S. economic interests.  Within the nuclear space, this could impact both novel fission and fusion technologies that are either not covered or loosely regulated under current export control regimes—although its actual impact will follow only after this legislation is applied in practice.

While certain parts of this legislation may come into effect immediately, both CFIUS and the Executive Branch will have to undertake rulemakings and additional actions to fully implement its new powers.  This will provide opportunities for potentially affected parties to get their voice known, especially as the role of (and concern with) foreign investment in U.S. nuclear innovation is only expected to grow.

For more about CFIUS and nuclear export controls, as well as the above-described legislation, please contact the authors.

The U.S. commercial nuclear energy industry helps our government meet several key national security objectives, but it faces severe challenges.  Hogan Lovells, in collaboration with the Center for Strategic and International Studies, has authored “Back from the Brink: A Threatened Nuclear Energy Industry Compromises National Security” to bring attention this issue and suggest a path forward.

Among other things, the paper evaluates the current state of the industry (including with a “forcefield analysis” out to 2050), explains why U.S. government action is critical at this moment, and proposes how we can move forward in a manner that best protects our country’s national security.  Key proposals set forth in the paper include:

1. Form a Nuclear Leadership Program as a central government resource to kick-start a new public-private partnership to grow the U.S. nuclear power industry. This new U.S. body should centralize the multitude of U.S. agencies that work with the nuclear industry. While working with private-sector support, the program should be U.S. government led.

2. Form a Nuclear Energy Advisory Council, generally composed of current and former business and engineering executives, and U.S. government leaders, to advise the president and National Security Council on the commercial nuclear industry, mirrored after the National Infrastructure Advisory Council (NIAC).

3. Use the Nuclear Leadership Program and the Nuclear Energy Advisory Council to Drive Forward Critical Domestic Nuclear Energy Industry Policy Changes: These include (i) supporting the completion of our present nuclear projects under construction, (ii) readying the next wave of U.S.-origin advanced reactors, and (iii) developing a “ready reserve” option for some U.S. stressed nuclear plants.

4. Use the Nuclear Leadership Program and the Nuclear Energy Advisory Council to Drive Forward Important International Nuclear Energy Industry Policy Changes: These include (i) creating a framework for a joint “USA, Inc.” public-private partnership for international new-build nuclear projects, and (ii) marketing the benefits of the U.S. regulatory framework and nonproliferation regime abroad.

5. Look at the Saudi Nuclear New-Build RFP as a Potential Turnaround Opportunity and Test Case. The U.S. industry has an opportunity to regain some of its lost ground with one of the biggest potential nuclear new-build opportunities in the world—a 16-reactor project currently contemplated in Saudi Arabia.

This paper was prepared by Michael Wallace, Amy, and Sachin, with valuable input from our Hogan Lovells colleague Steven Miller.  Mr. Wallace is a Senior Advisor at the Center for Strategic and International Studies.  He is also a member of the President’s National Infrastructure Advisory Council, and a Board Member of the Emirates Nuclear Energy Corporation’s Board of Directors.  Prior to this, Mr. Wallace was the former Chief Operating Officer of Constellation Energy and Chairman of Constellation Energy Nuclear Group.

If you have any questions about the paper, or about the national security implications of the commercial nuclear industry, please contact the blog authors.

The NRC staff recently publicly released a major new paper embracing regulatory reform to advance risk-informed regulation for advanced reactors.  Included in this paper is a concept of a “10 CFR Part 53”—a potentially entirely new process for licensing advanced reactors.

SECY-18-0060, “Achieving Modern Risk-Informed Regulation,” proposes “several significant and specific revisions” to the NRC regulatory framework.  The staff introduced these proposals by first discussing the results from an outreach program, which found a “need for systematic and expanded use of risk and safety insights in decisionmaking.”  The review team also found recommendations for a more open and efficient decisionmaking process for licensing new technologies.  Of significance, the NRC staff explained in this paper that some of its proposals, reflecting feedback from its outreach, will require cultural change at the NRC—in fact, that “[a] shift in NRC culture will be key to the success of the transformation initiative.”

The paper then builds from this, to discuss ways to “transform” the NRC’s licensing process.  The first part of this discussion focuses on changes that can be made through guidance, in particular to adopt “approaches that use qualitative and quantitative safety and risk insights to scale the level of review needed to make a finding of reasonable assurance.”  As part of this initial reform, the NRC staff discusses use of “(1) expert panels to guide reviews of incoming submittals for new technologies and major licensing actions; (2) internal small groups of NRC staff and management to guide the licensing process (called ‘guiding coalitions’); and (3) ‘tiger teams’ consisting of small groups of NRC staff who are empowered to identify alternative solutions to resolve licensing challenges, without being unnecessarily constrained by current processes or past practice.”

However, then the NRC staff paper moves on to discuss much more significant regulatory reform—to essentially create a new licensing path for advanced reactors that focuses on “meeting high-level risk-informed, performance-based criteria.”  Enclosure 5 to the paper, which lays out “Additional Detail on Areas of Transformation,” delves into more detail, and also advocates for a “10 CFR Part 53” licensing process: “[A] new optional framework [that] would provide greater applicability for non-LWR applicants and minimize the need for exemptions.”  Although recognizing the challenges with a new rulemaking, the paper advocates for the approach and notes that “[t]he timing for a new rule is ideal right now, in that it will signal to the rising non-LWR community and other stakeholders that the NRC is committed to reviewing and licensing new reactor technology in a timely manner and in a way that relates directly to tomorrow’s technology.”

SECY-18-0060 represents the product of a great deal of work and research by the NRC staff, and promises significant, if not fundamental, reforms to the NRC’s licensing process at this critical juncture for the “New Nuclear” economy.  Expect to see significantly more analysis and attention to this effort as it moves forward.  For more information on the NRC’s regulatory reform initiative, please contact the authors.

A recent headline in the energy trade press would not likely have caught the attention of the advanced nuclear industry: “Trump’s DOE punishes Obama-era solar success story.” A casual reader might quickly dismiss the story as indicative of a Trump Administration bias against renewable energy. The details reported in the story, however, convey a far different message—one that is great significance to the many advanced nuclear technology companies that are responding to DOE’s funding opportunity announcement for advanced nuclear development.

The E&E News article reports that a company by the name of 1366 Technologies accepted millions of dollars in DOE funding to develop a process to reduce the cost of producing silicon wafers. In return, it made certain commitments routinely required of recipients of DOE technology funding: to engage in substantial U.S. manufacture of the technology, to disclose to DOE patents produced with DOE financial assistance, to give DOE a royalty-free license for government use, and to give DOE so-called “march-in rights” to license the technology to others if the funding recipient fails to use the technology itself.

According to the published story, DOE has sought to enforce the commitment 1366 Technologies made to build its solar wafer manufacturing plant incorporating the DOE-funded technology in the U.S., specifically in upstate New York. Delays in obtaining a wholly separate DOE loan guarantee are said to account for a decision by 1366 to instead build its first plant in Asia. E&E News reports that DOE has responded with a submission to the United States Trade Representative suggesting that the failure to comply with the U.S. manufacture commitment should be weighed in considering a request by 1366 for exemption from the 30 percent tariff that generally applies to foreign manufacturers of solar panels. DOE is also reportedly evaluating its options with respect to 1366’s failure to disclose patents it filed while it was accepting DOE financial assistance. Under DOE intellectual property (IP) rules, the failure to make a required disclosure could result in a loss of rights in those patents.

This is not fairly characterized as an instance of the Trump Administration attacking the solar industry. Rather, it represents a continuation of the practice that the Obama Administration and others before it pursued (albeit with varying degrees of ardor) of ensuring that the American taxpayer gets the benefit of its bargain for assisting in the advancement of energy technologies. That funding is designed to advance U.S. competitiveness in energy technology and energy manufacturing. In DOE’s view, allowing the IP that results from the taxpayer investment to be shipped abroad for commercialization can defeat the purpose of the taxpayers’ investment. DOE’s views are supported by statute (in particular, this is the intent behind the Bayh Dole Act, 35 U.S.C. §§ 200 – 212).

This is why the advanced nuclear technology industry should be paying close attention to the 1366 case. The FOA for advanced nuclear technology puts great emphasis on the desire to rebuild U.S. nuclear manufacturing capability. DOE has recently announced its first round of awards under the FOA. Additional applicants have submitted in the second round, and many others are preparing to submit one or more applications over the five years that DOE has said the FOA will remain open. The FOA represents a great opportunity to make important advances in nuclear technology prowess and to restore the U.S. nuclear supply chain to its past pre-eminence. That is what DOE expressly seeks to do. Therefore, it is important to understand and to put in place a program to assure compliance with the “strings” that are attached to the DOE money.

More than 10 pages of the lengthy FOA are devoted to the applicable IP rules. The eyes of an enthusiastic applicant might easily glaze over when they get to those 10 pages, but that would be a mistake. The rules reflect the implementation of statutory requirements, and they are unique to government-funded IP. They may be unfamiliar to those schooled in standard IP rules and practices associated with filing for patent rights. The ultimate commercial success of developing a great new technology may depend on understanding the obligations, managing the risks, engaging with DOE candidly when unanticipated challenges arise, and of course internalizing what we all already know: there really is no free money.

Applicants for DOE funding worry a lot about the government royalty-free license and the march-in rights (which the government has never exercised). However, the story about 1366 Technologies shows that those who accept federal funding to develop their technologies should have far greater concern about meeting the commitments they make to manufacture the technology in the U.S. and to disclose the patents they develop with government funds. In our experience, DOE is open to discussion and negotiation, within the constraints of its statutory obligations. However, DOE has demonstrated its willingness to employ at least some of the powerful enforcement tools it has at its disposal to enforce those obligations if it concludes the circumstances warrant such action.

In short, it is important to understand and take seriously the substantial U.S. manufacture and patent disclosure obligations that come with a financial assistance, because DOE does.

For more information, please contact Mary Anne Sullivan.

On Sunday, the popular TV show Madam Secretary gave a starring role to the climate and security benefits of nuclear power. The episode, titled “Thin Ice,” which is still available on the CBS website, proffered a full-throated defense of the climate benefits of nuclear power, turned a grassroots activist organization into a supporter of nuclear energy, and showcased how a nuclear powered ice breaker protected the Arctic from a foreign incursion. It capped with Secretary McCord convincing the show’s President to revise the national nuclear policy. As Michael Shellenberger opined following the episode (he also walks through the episode in detail), this marks a turning point for Hollywood, and “represents a popular culture breakthrough for the pro-nuclear movement.”  We encourage everyone to watch the episode!

From there, the week has only gotten better for nuclear innovation. The U.S. Nuclear Regulatory Commission (NRC) completed “the first and most intensive phase of review for” NuScale’s Design Certification Application for its small modular reactor. The NuScale design review has six phases to its schedule; but the first review sets the tenor, as it establishes the NRC staff’s preliminary safety evaluation of the reactor and encompasses a large portion of the requests for additional information. NuScale performed admirably in both areas. Along with this significant milestone—which derisks the company’s regulatory path forward—NuScale also received US$40 million from U.S. Department of Energy to continue advancing its innovative new, passively safe reactor design. And even the issue of nuclear waste storage might see progress, as the Nuclear Waste Policy Amendments Act of 2018 will get a vote on the floor of the House soon. The bill will move forward interim storage of spent nuclear fuel, and seek resolution on the licensing of a final national repository.

And apart from advancements on earth, NASA successfully tested KRUSTY, or “Kilopower Reactor Using Stirling Technology,” a nuclear reactor for potential moon and Mars bases. NASA personnel stated after the successful Nevada trial that “[n]o matter what environment we expose it to, the reactor performs very well.” NASA, along with Hollywood and Congress it seems, has taken a renewed interest in the role nuclear power can play in space exploration.

If you wish to learn more about any of these encouraging events, please contact the authors.

The U.S. Department of Energy (DOE) this week announced the award of approximately $60 million to 13 advanced reactor projects—the first under the funding opportunity announcement (FOA) “U.S. Industry Opportunities for Advanced Nuclear Technology Development.”  The 13 projects cover a diversity of steps in the commercialization process:

  • 4 concern modeling and development pathways;
  • 2 concern regulatory assistance and engaging in pre-licensing reviews;
  • 2 concern demonstration readiness; and
  • 5 other awardees received GAIN vouchers for research and development.

The R&D topics likewise span a broad spectrum, from fuel cycle facilities to reactor design.  More information on the awards can be found in the press release.

DOE notes that these are just the first announcements, and a “subsequent quarterly application review and selection processes will be conducted over the next five years.”  Moreover, “DOE intends to apply up to $40 million of additional FY 2018 funding to the next two quarterly award cycles for innovative proposals under this FOA.”  So keep on the lookout for more opportunities!

The awards follows fast from Secretary Perry’s announcement of a “Statement of Intent” to cooperate on fast-spectrum sodium-cooled advanced reactors.  As provided in the announcement: “Cooperation on the development of advanced fast neutron sodium-cooled reactors will explore areas of collaboration ranging from modeling, simulation, and validation to technology testing, access to supply chain, experimental facilities, and advanced materials.”  This type of work buttresses Secretary’s claim that DOE wants to refocus on nuclear to make it “cool again.”  To learn more about DOE’s bilateral cooperation efforts, please see here.

For more on DOE funding opportunity announcements and how to apply, and on opportunities to take advantage of DOE bilateral cooperation agreements, please contact the authors.

NASA iTech and the U.S. Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) are collaborating on a unique competition to identify transformational energy technologies that can address critical problems here on Earth that also hold great potential to solve critical technology challenges in future space exploration.  On that list: fission reactors.

NASA and ARPA-E are seeking to identify the nation’s top entrepreneurs and researchers to present their innovative technologies to address energy-specific challenges. A few examples of technology sub-themes that NASA believes have the potential to improve future space power systems include, but are not limited to:

  • Small Fission Power Systems
  • Fuel Cells and Regenerative Fuel Cells
  • High-energy Density Batteries and Supercapacitors
  • Solar Power Systems
  • Innovative Power Management and Distribution (including smart grids and wireless power transfer)
  • X-Factor Energy: innovations so compelling NASA and ARPA-E should know about them

Through April 29, 2018, inventors and entrepreneurs can submit a five-page white paper on their concept on the NASA iTech website.  A panel of subject matter experts from NASA and ARPA-E will review ideas submitted and select the top 10 finalists based on their relevance and potential impact to present at the upcoming 2018 iTech Energy Cycle.

The initial top 25 semi-finalists for this energy-focused cycle will be announced on May 10, 2018. The top 10 finalists will be announced on May 25, 2018. Those finalists will be invited to present their technologies and engage with NASA and ARPA-E subject matter experts, potential investors, and industry partners at the NASA iTech 2018 Energy Forum in New York City, June 11-14, 2018.

The ARPA-E at the U.S. Department of Energy provides R&D funding for transformational ideas to create America’s future energy technologies. ARPA-E focuses exclusively on early-stage technologies that could fundamentally change the way we generate, use, and store energy.

NASA iTech is an initiative sponsored by NASA’s Space Technology Mission Directorate and managed by the National Institute of Aerospace in Hampton, Virginia.  “NASA iTech has proven to be a successful public-private partnership model for stimulating the development of ground-breaking technologies, without the government being the early investor,” said Kira Blackwell, NASA iTech program executive in the Space Technology Mission Directorate at NASA Headquarters in Washington. “Previous entrants to NASA iTech have already raised more than $50 million in private investment funds.”  The NASA announcement is here.  For more information about the NASA iTech initiative, visit here.  For information about the Space Technology Mission Directorate, visit here.

Please contact one of the authors with any questions.

On April 4, the U.S. Nuclear Regulatory Commission (NRC) issued Regulatory Guide 1.232, Guidance for Developing Principal Design Criteria for Non-Light Water Reactors.  The regulatory guide’s generic set of Advanced Reactor Design Criteria cover most non-light-water technologies. The guide also includes technology-specific criteria for sodium-cooled fast reactors and high temperature gas-cooled reactors.

The regulatory guide describes how the general design criteria (GDC) set forth in Part 50 of the NRC’s regulations may be adapted for non-light-water reactor (non-LWR) designs. The guidance may be used by non-LWR reactor applicants to develop principal design criteria for any non-LWR designs, as required under the NRC nuclear power plant regulations. Notably, the guide can be used by advanced reactor designers to align their concepts with relevant NRC regulations for nuclear power plants, and will assist the NRC staff when reviewing future license applications.

We had previously written about the draft regulatory guide published by the NRC last year here.  As we noted then, this is an important document that deserves close attention by the advanced reactor community.  It provides one of the first detailed insights into how the NRC views advanced reactors, how far it is willing to step away from the GDC framework, and what it finds of importance from a safety perspective for advanced reactors.

For questions on the guidance, please contact one of the authors.