The U.S. Department of Energy’s (DOE’s) Gateway for Accelerated Innovation in Nuclear (GAIN) announced last week its second round of awards.  A number of these awards have gone directly to advanced reactor startups, and they hope to push forward a number of technologies related to advanced reactors or next-generation light-water reactors.

We wanted to take a little closer look at the awards in this post.  To explain, GAIN awards come in the form of “vouchers” which provide awardees “with access to the extensive nuclear research capabilities and expertise available across the U.S. DOE national laboratories complex.”  Some of the advanced reactor ventures that received vouchers include Elysium Industries, Kairos Power, Muons, Oklo, Terrestrial Energy, Transatomic Power, and others, covering a broad swatch of different reactor types.  One nuclear battery startup, named MicroNuclear, also received an award—nuclear battery technologies have been gaining traction, with the “U-Battery” consortium engaging with the Canadian Nuclear Safety Commission for pre-licensing review in March of this year.  In addition, a number of consulting and engineering companies also received awards, and the results from those projects could benefit a number of different reactor designs.

The most popular participating DOE laboratories are the Idaho, Argonne, and Oak Ridge National Laboratories, although Sandia and Pacific Northwest National Laboratories also will be partnering with certain awardees.  About half of the research projects touch on molten salt reactor technologies, focusing on topics such as different salt chemistries, thermal hydraulics, and waste reprocessing.  A number of awards focus on metal-cooled fast reactors (including regulatory support), and modeling and simulation issues.  Five projects also have a focus on light-water reactor technologies, exploring areas such as small modular reactor concepts and waste reprocessing.

For any questions related to next-generation nuclear reactors or the GAIN initiative, please contact the authors.

In prior posts we have touched on the importance of prototype and test reactors in enabling the eventual commercialization of advanced reactors.  To help in those efforts, the NRC recently issued early draft guidance on “Nuclear Power Reactor Testing Needs and Prototype Plants for Advanced Reactor Designs.”  This document has been issued to support a public meeting on the topic, currently scheduled to occur sometime in August 2017.

As described by the NRC, this guidance describes the (i) “relevant regulations governing the testing requirements for advanced reactors,” (ii) “the process for determining testing needs to meet the NRC’s regulatory requirements,” (iii) “when a prototype plant might be needed and how it might differ from the proposed standard plant design,” and (iv) “licensing strategies and options that include the use of a prototype plant to meet the NRC’s testing requirements.”

To add, the document also provides some discussion as to the differences between prototype plants, demonstration reactors, test reactors, first-of-a-kind reactors, and other terms that are often thrown around in this space.  It also discusses different categories of tests to be conducted, and provides an FAQ on the use of a prototype plant as part of a testing regime.  Appendix A is an annotated reprint of a section of a 1991 staff paper, and is entitled “Process for Determining Testing Needs”; and Appendix B provides an interesting discussion on “Options For Using a Prototype Plant To Achieve a Design Certification or Standard Design Approval.”

For any questions on the above, please contact the authors.